

AUGUST, 2019

Project Website: https://cocoasoils.org/

Authors of this report and contact details:

- 1. Theresa Ampadu-Boakye: <u>t.ampadu-boakye@cgiar.org</u>
- 2. Rich Kofi Kofituo: R.Kofituo@cgiar.org
- 3. Mahyao Adolphe: mahyaoadolphe@yahoo.fr
- 4. Precillia Ijang: ijang2001@yahoo.fr
- 5. Kayode Oluyole: <u>kayodeoluyole@yahoo.com</u>
- 6. Frederick Amon-Armah: <u>famon-armah@hotmail.com</u>
- 7. Marieke Sassen: Marieke.sassen@unep-wcmc.org
- 8. Richard Asare: r.asare@cgiar.org

Citation: Theresa Ampadu-Boakye, Rich Kofi Kofituo, *et al.* 2019, CocoaSoils Baseline Survey Report, <u>https://cocoasoils.org/</u> Ghana, 51 p.

© 2019. This work is openly licensed via <u>CC BY 4.0</u>.

Acknowledgements:

This report is a product of close collaboration between the national cocoa research partners (CRIN, CRIG, IRAD, CNRA), the cocoa private companies engaged, and the project coordination team of CocoaSoils.

Deepest appreciation goes to the cocoa companies who provided access to their farmers' databases, serving as the sample frame for the entire study; and the four socio-economists from the national system organizations for coordinating the entire baseline implementation in the respective countries, and providing support for data cleaning, analysis, and reporting. Thanks to the supervisors of the various enumeration teams who worked with the enumerators in data collection for the excellent work done.

Special thanks go to the project coordination team, led by Richard Asare, who facilitated the various meetings with the cocoa companies and the selection of the coordinating teams across the countries. We also acknowledge PhD candidates Deo-Gratias Hougni and Urcil Kenfack, who provided support as supervisors in the data cleaning process, and Paul Donstop for his valuable technical guidance during the design of the research plan.

Disclaimer:

This publication has been funded by the Norwegian Agency for Development Cooperation (Norad) through a grant to the International Institute of Tropical Agriculture (IITA) entitled "Sustainable intensification of cocoa production through the development and dissemination of integrated soil fertility management options". Its content does not represent the official position of Norad, IITA, WUR, IDH or any of the other partner organizations within the project and is entirely the responsibility of the authors.

The information in this document is provided as it is, and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at their own sole risk and liability.

CONTENTS

T.	ABLES		5
F	IGURES		6
A	BBREVI	ATIONS AND ACRONYMS	7
1		INTRODUCTION	8
	1.1	Project Background	8
	1.2	Objectives of the Baseline survey	88 0
	1.3	Scope of the study	9
2		METHODOLOGY	9
	2.1	Sampling technique and sample size	9
	2.2	Data collection, analysis, and reporting	11
	2.3	Limitations and issues encountered	IZ
3		RESULTS AND DISCUSSION	12
	3.1	Project impact indicators	12
	3.2	Descriptive analysis of household characteristics	14
	3.2.1	Distribution of household heads by sex	14
	3.2.2	Age distribution of respondents	14
	3.2.3	Education level of respondents	15
	3.2.4	Marital status of respondents	15
	3.2.5	Household size and composition	16
	3.2.6	Assets and control of productive resources	18
	3.2.0	6.1 Land ownership status	19
	3.2.0	6.2 Labor types per ISFM practice used by respondents	19
	3.2.0	5.3 Segmentation of respondents using climate smart cocoa (CSC) implementer	20
	3.3	Poverty Probability Index	
	3.3.1	Distribution of households along the PPI scale	
	3.3.2	Poverty probability scores across countries	23
	3.4	Awareness and use of Integrated soil fertility management (ISFM) practices	23
	3.4.1	Access to extension services, training, and credit services	24
	3.4.2	Access to credit	20
	3.4.3	Awareness and use of ISEM practices	29
	3.4.5	2.1 Awareness of ISFM practices	29 30
	3·4·.	2.2 Correlation between awareness and use of ISEM practices	
	3.4.4	Productivity of cocoa plantations	
	3.4.4	4.1 Age of plantations surveyed	35
	3.4.4	4.2 Previous land use of plantations surveyed	36
	3.5	Yield distribution and average yield estimate	36

3.6	Understanding the yield differences—below and above potential yields	36
3.7	Total household income and expenditure	39
3.7.1	Total household income	39
3.7.2	Household expenditure	40
3.8	Food security and food access	41
3.8.1	Food availability and access at the household level	41
3.8.2	Household dietary diversity score (HDDS)	41
4	DEFORESTATION, BIODIVERSITY, AND ECOSYSTEM SERVICES	43
4.1	Baseline of ecosystem services and biodiversity in the cocoa zone of West Africa	a.43
4.1.1	Ecosystem services in the cocoa zone: Baseline	43
4.1.2	Biodiversity in the cocoa zone: Baseline	44
4.2	Baseline current risk to biodiversity and ecosystem services from cocoa	45
4.2.1	Risks to ecosystem services under current suitability	45
4.2.2	Risks to biodiversity under current suitability	46
4.3	Deforestation	47
5	SUMMARY AND CONCLUSIONS	48
REFERENC	ES	50

TABLES

Table 1. Project indicators to be measured at Baseline	9
Table 2 Sample size distribution across countries	10
Table 3.Sample frame per partner across the countries	10
Table 4. Sample size per agroecological zone per country	11
Table 5.Baseline values for project impact indicators	13
Table 6. Sex distribution of households (HH) heads interviewed	15
Table 7. Educational level of respondents	
Table 8. Marital status of the respondents	17
Table 9. Household size and composition	17
Table 10. Group membership	
Table 11. Access and control of productive resources	
Table 12. Test of significance between mean values of male and female farmers	
Table 13. Land ownership status	
Table 14. Table 14. Frequency distribution of access to labour by gender	
Table 15. Segmentation of respondents using CSC	
Table 16. Access to training and extension services	
Table 17. Summary of type of training and extension services received	
Table 18. Request for credit by gender	
Table 19. Access to credit by gender	
Table 20. Use of credit received Error! E	Bookmark not defined.
Table 22. Awareness of ISFM practices in cocoa production	
Table 23. Use of ISFM practices	
Table 24. Correlation between awareness and use of ISFM practices	
Table 25. Correlation between household and characteristics and ISFM component	s33
Table 26. Age of cocoa plantation	
Table 27. Previous land use	
Table 28. Yield distribution	
Table 29. Average yield (kg/ha) — potential yield	
Table 30. Average yield (kg/ha) — raw yield data	
Table 31. Correlation between yield below potential and ISFM components	
Table 32. Correlation between yield above potential and ISFM components	
Table 33. Gross income (\$) per annum per household	40
Table 34. Total household expenditure	41
Table 35. Average household dietary score (HDDS)	42
Table 36. Consumption of different food groups (%)	43

FIGURES

Figure 1. Sex distribution of survey respondents	14
Figure 2. Age distribution of respondents	15
Figure 3. Distribution of household along the Poverty Probability index scale	25
Figure 4. Sources of training and extension services	25
Figure 5. Request and access to credit	27
Figure 6. Reasons for not requesting credit	28
Figure 7. Management practices carried out by respondents whose yields are above the pot	tential and
ISFM components	38
Figure 8. Contribution of sources of income to total HH income	40
Figure 9. Availability of food all year round	42
Figure 10. Coping strategies for food shortages	42
Figure 11. Baseline total realised ecosystem services in the cocoa zone	44
Figure 12. Baseline biodiversity importance in the cocoa zone based on range-size rarity for amphibians, and birds.	mammals, 45
Figure 13. Bivariate map showing modeled cocoa suitability against ecosystem service deliver colours are very suitable for cocoa growing as well as high in ecosystem service delivery.	y. Dark red 46
Figure 14. Bivariate map showing modeled cocoa suitability against biodiversity importance range-size rarity) in forests. Dark brown areas have biodiversity and high risk from co	(based on coa-driven
forestation	47
Figure 15.Bivariate map showing modeled cocoa suitability against biodiversity importance	(based on
range-size rarity) in forests outside protected areas. Dark brown areas have high biodiv	versity and
high risk from cocoa forestation	48
Figure 16. Deforestation between 2010 and 2017 (Terra-i) in the current suitable zone for co	coa with a
cutoff of 25% (i.e., good and upwards). (Schroth et al. 2016)	48

ABBREVIATIONS AND ACRONYMS

Agroecological Zones
Climate Smart Cocoa
Community-based Organization
Centre National de Recherche Agronomique
Cocoa Research Institute of Ghana
Cocoa Research Institute of Nigeria
Global Positioning System
Household Dietary Diversity Score
The Sustainable Trade Initiative
International Institute of Tropical Agriculture
The Agricultural Research Institute for Development
Integrated Soil Fertility Management
Monitoring, Evaluation and Learning
Nondisclosure Agreement
Nongovernmental Organization
Norwegian Agency for Development Cooperation
Open Data Kit
Poverty Probability Index
Statistical Package for Social Sciences
Wageningen University and Research

1 INTRODUCTION

1.1 Project Background

CocoaSoils is a global program supported by the Norwegian Agency for Development Cooperation (Norad) through a 5-year (2017-2022) project in Africa. It is implemented through a consortium of international and national partners led by IITA, IDH, and WUR. The overall objective of the project is to achieve a sustainable cocoa supply sector with increased productivity, efficient use of agricultural inputs and improved rural livelihoods while minimizing the risk of cocoa-driven deforestation.

The project is aimed at developing relevant integrated soil fertility management (ISFM) products and other cocoa production-related tools that are demanded by cocoa stakeholders, including private sector companies, private and public dissemination networks, and policymakers, and making such products available to beneficiaries for use. The project is expected to contribute to increasing incomes and yields among 90,000 cocoa farmers, reduce deforestation, avoid child labour and maintain ecosystem balance through monitoring deforestation and the development of tools to support a more ecosystem service-based approach to cocoa development (at landscape and national levels).

This will be achieved by developing state-of-the-art knowledge and tools on how to enhance cocoa yields in a sustainable way and sharing these tools through training events with extension agents of the project's dissemination partners, who in turn ensure awareness and knowledge gain at the smallholder farmer level. The target countries include Cameroon, Côte d'Ivoire, Ghana, and Nigeria, and the project will be implemented in the operational areas of its dissemination partners within the cocoa-producing areas of these countries.

1.2 Objectives of the Baseline survey

The objective of the baseline survey was to establish a reference point for impact and selected outcome indicators in the project results framework. Emphasis was placed on indicators for which baseline data were not available. These indicators included cocoa yields from smallholder cocoa farmers, income generated from cocoa production, deforestation rates (focusing on previous land use of each cocoa plot), types of labor used/access, and the types of ISFM recommendations/practices in use by target smallholder cocoa farmers. *Table 1* shows the project impact indicators as in the results framework.

In addition, this study documents the range of environmental factors present in existing cocoa systems (e.g., shade cover, weather, soil, management practices, etc) to allow the design of appropriate Satellite Trials to address knowledge gaps. Other specific objectives include:

- Redefining additional and or appropriate interventions (such as training content) for the project beneficiaries to respond to farmers' needs
- Providing justification for revision of targets if and as required during project implementation.

Table 1.	Project	indicators to	be measured	at Baseline

Project results	Indicators
Impact. Smallholder cocoa farmers benefit from sustainably increased cocoa productivity and income	 Change (%) in cocoa yields for target households (90,000 households)
generated through cocoa production Sustainability is the continuous increase in cocoa	 Change (%) in income generated from cocoa production for target households (90,000 households)
roductivity through avoided deforestation and child abor voided deforestation is not cutting down the forest for urposes of cocoa production and maintaining ecosystem unctions	Change (%) in deforestation rates compared to control sites
	No evidence for child labor obtained
	 Change in carbon stock, water and biodiversity indexes in cocoa zone of Côte d'Ivoire and Ghana
Outcome 2. Recommendations generated through research products are used by target households	 Number of cocoa-producing households (gender disaggregated) using new recommendations/new knowledge Types of recommendations being used by the target households

1.3 Scope of the study

The baseline was implemented in the target areas of the project's dissemination partners across four countries (Cameroon, Côte d'Ivoire, Ghana, and Nigeria). The term "target areas" refers to all areas in the four countries where the development partners intend to disseminate the project's recommendations for cocoa management that will be generated through the research activities. Respondents were mainly smallholder cocoa farmers working with the project partners.

With regards to the survey tool for cocoa farmers, the questions focused on socioeconomic factors, assets of participating households, current household incomes from cocoa production, other sources of income, yield levels from farmers' fields, current cocoa production management practices, awareness and knowledge of ISFM recommendations/products, perspectives on child labour, gender equality issues, and land use patterns. Units of observation included farmers and their households and farms. Other spatial data, such as Global Positioning System (GPS) coordinates of respondents' homesteads and location of farms and sizes, were included.

2 METHODOLOGY

2.1 Sampling technique and sample size

Respondents of the survey were smallholder cocoa farmers in the operational areas of participating partners. A sample size of 800 cocoa farmers per country was distributed proportionately across implementing partners based on the number of farmers in their databases.

Farmers in the partner databases served as sample frames from which the 800 farmers were drawn. *Table 2* shows the actual distribution of the sample size across the four countries, and

Table 3 shows the specific partners and number of farmers that formed the baseline sample frame. In all, a total of 3280 (17% female) cocoa farmers were interviewed across the various agroecologies in the four countries, with country distribution as follows: Cameroon (25.6%), Côte d'Ivoire (24.6%), Ghana (25.2%), and Nigeria (24.6%). The actual sample size exceeded the planned sample size as new partners joined the survey a few days after commencement and needed to adjust to accommodate their respective sample frames and sample sizes. New locations were also added by private partners (e.g., Cameroon).

Country	Planned sample size	Actual sample	
Cameroon	800	838	
Côte d'Ivoire	800	808	
Ghana	800	827	
Nigeria	800	807	
Total	3200	3280	

|--|

Country	Company name	Operational area (Region/State)	Number of farmers
Cameroon	Olam(ofi)	Sud-Ouest, Centre	1,487
Côte d'Ivoire	Cargill	Indénié-Djouablin, Gôh, Nawa, Gbokle Lôh-Djiboua, Guémon, Tonkpi, Haut- Sassandra, Marahoué, Nawa, San- Pédro, Sud-Comoé, Agnébi-Tiassa, Mé, Bélier, Grands Ponts	97,208
	ICRAF/MARS	Nawa	272
Ghana	Kuapa Kokoo	Ashanti, Ahafo, Bono East, Western North, Western, Central	69,092
	Mondelez	Eastern, Ashanti	1,105
	Cargill	Western, Western North	6,583
	Transroyal (Rockwinds)	Central, Ashanti, Eastern	4,572
Nigeria	Olam (Ofi)	Ondo, Osun, Cross River	18,625
TOTAL			198,949

Table 3. Sample frame per partner across the countries

The study adopted a multistage stratified random sampling technique to ensure a representative sample of cocoa farmers was selected for the study. First, the study areas were purposively sampled based on partner operational areas, which were stratified according to AEZs, and the sample size was proportionately distributed among partners according to the number of farmers submitted for the survey. The study areas included all the cocoa-growing in the Agro-Ecological Zones (AEZs) where the dissemination partners operate. The country-level AEZs, as submitted by partners, have been aligned to the AEZs demarcated by the various cocoa research institutes in the three counties. Table 4 has a list of country AEZs where the survey was carried out.

Second, the sample size was divided proportionately between the agroecological zones based on the number of farmers present in the area and by each partner (if more than one partner was in the zone).

To select villages/communities within the zones, farmer databases from private partners were reviewed alongside their communities within the various AEZ and randomly selected. The number of farmers per community/village was determined using weights (based on the number of farmers in the selected community). The number of farmers was randomly selected from their groups (with assistance from partner field staff) from each selected village (mainly from cooperatives or farmer associations of the partners). *Table 4* shows the sample size per AEZ across the three countries.

Cameroon		Côte d'Ivoire		Ghana		Nigeria	
AEZ	Frq	AEZ	Frq	AEZ	Frq	AEZ	Frq
Forest Zone	6 ₃₃	Sudano-Guinean average forest area	546	Dry Semi- Deciduous Inner Zone	9	Humid Forest	154
Forest/Savanna Zone	32	Guinean Forest area	252	Moist evergreen	470	Humid Forest/Derived Savanna	141
Savanna Zone	22	Sudano–Guinean preforest area	10	Moist Semi- Deciduous North West	79	Humid Forest/Derived Savanna	228
Semi- Zone	151			Moist Semi- Deciduous South East Wet Evergreen	240 29	Humid Forest/Derived Savanna	284
TOTAL	838		808		827		807

Table 4. Sample size per agroecological zone per country.

2.2 Data collection, analysis, and reporting

The survey gathered data and information from cocoa farmers on both qualitative and quantitative aspects. An agreed survey tool was programmed in a free and open-source mobile data collection tool known as Open Data Kit (ODK) and used for data collection. The methods of data collection included face-to-face interviews with sampled respondents, geo-tracing of selected plots, and GPS locations of the homestead. All the data were sent directly to the CocoaSoils ODK aggregate platform for quality control and access.

Enumerators were selected among research assistants within the cocoa research Institutes and university graduates who had experience in data collection, could use tablets, and could speak and understand local languages in the participating countries. A four-day training programme (comprising three days of training and one day of refresher training) was organized in each country, including field pretesting of data collection tools to ensure common understanding, usefulness, and logic of the tool by all enumerators.

Data quality checks were done at numerous levels (during and after data collection). Supervisors of enumerators assessed the completeness of survey tools and rectified obvious mistakes

(without changing the actual content of responses). This was done before the data upload. Centralisedcentralire assessed for its completeness and validity by the Monitoring, Evaluation and Learning (MEL) team and feedback shared with the country teams as data collection progressed.

Data was analyzed using Statistical Package for Social Science (SPSS), version 25. A combination of statistical analysis, including descriptive statistics (means, frequencies) and test of significance, using t-test and Pearson regressions, were applied. The descriptive analysis characterized the respondents' households, whereas the regression coefficients were computed to ascertain the relationships among variables such as determinants of use of inputs, the relationship among use of different inputs, age of plantation and yield. The Poverty Probability Index (PPI) Scorecard and the look-up tables were used to analyse the percentage of households within a PPI score range and the probability of households within, above or below poverty lines.

2.3 Limitations and issues encountered

Three significant limitations were faced during the survey implementation across the countries. First, it took much more time than anticipated for the project to receive information on the operational areas of dissemination partners. Several discussions and meetings (including the signing of nondisclosure agreements) had to take place before the project was allowed access to partners' databases.

Second, information on the quantity of cocoa beans harvested was obtained through a memory recall by respondents. This approach had its limitations. There was the possibility that the information obtained may be proxies and may not reflect the exact quantity that was harvested (though it is much easier for cocoa farmers to know the number of bags produced). This limitation notwithstanding, the quality of data generated was reasonably accurate and compared with available secondary data. In addition, a sample of the data has been ground-truthed by the lead baseline coordinators in the countries.

3 RESULTS and DISCUSSION

3.1 Project impact indicators

To ascertain future changes due to contributions by the project interventions, the baseline survey has established a reference point for the project's impact indicators in the project results framework, especially those without baseline data, and to use these as benchmarks for impact. Table 5 shows the various baseline data for each indicator across the countries. Specific analysis of yield, income, labour types, previous land uses across the countries, and gender is discussed under specific sections hereafter.

Table 5. Baseline values for project impact indicators

Project results	Indicator	Baseline
<u>Impact 1.</u> Smallholder cocoa farmers benefit from sustainably increased cocoa productivity and income generated through cocoa	 Change (%) in cocoa yields for target households (90,000 households) 	 <u>Current cocoa yields (kg/ha):</u> Cameroon:429 Côte d'Ivoire: 391 Ghana: 526 Nigeria: 369
production Sustainability is the continuous increase in cocoa productivity through avoided deforestation and child labor Avoided deforestation is not	 Change (%) in income generated from cocoa production for target households (90,000 households) 	 <u>Current income (value of production)</u> <u>generated from cocoa production</u> (<u>USD/year/Household)</u> Cameroon: 2768 Côte d'Ivoire: 1491 Ghana: 1392 Nigeria:1172
cutting aown the forest for purposes of cocoa production and maintaining ecosystem functions	 Change (%) in deforestation rates compared to control sites 	 <u>Current Deforestation rates (using terra-I)</u> Refer to maps on current deforestation rates (pg 43–47) <u>Previous land use¹</u> Cameroon: 66% forest Côte d'Ivoire:50% forest and 17% fallow Ghana: 39% and 34% forest and fallow, respectively, Nigeria: 70% forest
	 No evidence for child labor obtained 	 Current forms of labour used by households Cameroon: Family labor (55%–74%), the rest vary between temporary hire and all year round Côte d'Ivoire: Family labor (93%–98%) and the rest vary between temporary hire and all year round Ghana: Family labor (55%–89%), the rest vary between temporary hire and all year round Nigeria: Family labor (45%–60% of respondents), the rest vary between temporary hire and all year round Nigeria: Family labor (45%–60% of respondents), the rest vary between temporary hire and all year round % Children in school
	 Change in carbon stock, water and biodiversity indexes in cocoa zone of Côte d'Ivoire and Ghana 	 Current carbon stock, water and biodiversity indexes in cocoa zone of Côte d'Ivoire and Ghana Refer to pages 47–50

Source: Survey data, 2019

¹ Considers only cocoa plot or first two plots of a respondent

3.2 Descriptive analysis of household characteristics

This section presents the demographic characteristics of the households covered in the baseline survey. These characteristics include household composition, age, sex, marital status, educational status, cocoa farming experience, access and control of productive resources, access and sources of credit, and types of crops grown.

The majority (82.7%) of respondents for this survey were male (Figure 1). Côte d'Ivoire had the highest proportion of male respondents (94.2%), with Cameroon, Nigeria, and Ghana having 87.9 %, 79.6%, and 69%, respectively. Female respondents constituted 5.8%, 12.1%, 31%, and 20.4% of respondents for Côte d'Ivoire, Cameroon, Ghana, and Nigeria, respectively.

Figure 1. Sex distribution of survey respondents

3.2.1 Distribution of household heads by sex

Household heads constituted 91.8% of the total respondents, with the majority being males (80.9%) (*Table 6*). Côte d'Ivoire had the highest number (92.7%) of households being headed by males, followed by Cameroon (86.7%), Nigeria (78.4%), and Ghana (66%). This implies that Ghana had the highest number of female household heads (18.7%).

3.2.2 Age distribution of respondents

The age of a household head has a positive correlation with how active and productive the household would be and the adoption of new and innovative technologies, among other factors. To ascertain the actual age and be able to use this parameter to establish further interrelationships, data on the age of the respondents was analyzed (of whom 82.7% were male).

Figure 2 shows the distribution of respondents by age. Age distribution was similar across the four countries. On average, about 64% of respondents were between 35 years and 60 years old. A similar trend was found between the average ages of males and females, with Cameroon and Côte d'Ivoire having the lowest average age of 47. The proportion of the lowest age range (18–35-year-old youth) was about 14% across the countries. The high percentage of active

respondents has a direct positive bearing on labour, ease of adoption of innovations, and reduction in the degree of risk aversion.

Variable	Sex	Can N	neroon = 835	Côte N	d'lvoire = 8o3	G N	hana = 817	Nig N =	eria 805	To N = 1	tal 3260
		Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent
HH head	Male	724	86.7	743	92.7	539	66.0	631	78.4	2637	80.9
	Female	79	9.5	23	2.9	153	18.7	101	12.5	356	10.9
	Total	803	96.2	766	95.6	692	84.7	732	90.9	2993	91.8
Not HH	Male	10	1.2	14	1.5	25	3.1	10	1.2	59	1.8
head	Female	22	2.6	23	2.9	100	12.2	63	7.8	208	6.4
	Total	32	3.8	35	4.4	125	15.3	73	9.1	267	8.2

Table 6. Sex distribution of households (HH) heads interviewed

Source: Survey data, 2019

Figure 2. Age distribution of respondents

3.2.3 Education level of respondents

The educational level of respondents differs across the four countries (Table 7). The highest level of education in Cameroon was primary (41%); in Ghana, junior high school (42.9%); in Nigeria, secondary (34.6); and in Côte d'Ivoire, most farmers had no formal education (48.4%). In total, 43.6% of respondents had primary and secondary education across the three countries. Most female respondents had a low education level, with the majority being at the primary level (4.6%). In relative terms, female respondents are less educated.

3.2.4 Marital status of respondents

The significance of marital status on agricultural production can be explained in terms of the supply of agricultural family labour. *Table 8* shows the marital status of respondents across the four countries. There was a similarity in the distribution of respondents' marital status across the countries, especially in Ghana and Nigeria, with over 80% and 90% of respondents, respectively,

being married. Côte d'Ivoire had about 78% of respondents married, and Cameroon had a little over 50% of respondents being married. In all, about 75% of respondents were currently married, while about 5% (males 3.8%, females 1%) were single (never married). In contrast, 1.5% of males and 5.5% of females were widowed.

Educational level	Sex	Car N	neroon =835	Côte N	d'Ivoire =803	G	hana I=807	N	igeria =794	T N=	otal =3250
		Freq	Percent	Freq	Percent	Freq	Percent	Freq	Percent	Freq	Percent
No formal	Male	25	3.0	371	46.2	91	11.3	80	10.1	567	17.4
education	Female	15	1.8	18	2.2	78	9.7	45	5.7	156	4.8
	Total	40	4.8	389	48.4	169	20.9	125	15.7	723	22.2
Adult education	Male	2	0.2	5	0.6	3	0.4	4	0.5	14	0.4
	Female	0	0.0	0	0.0	0	0.0	1	0.1	1	0.0
	Total	2	0.2	5	o.6	3	0.4	5	o.6	15	0.5
Primary	Male	292	34.9	199	24.8	84	10.4	194	24.4	769	23.7
	Female	51	6.1	11	1.4	46	5.7	60	7.6	168	5.2
	Total	343	41.0	210	26.2	130	16.1	254	32.0	937	28.8
Junior high	Male	99	11.8	134	16.7	268	33.2	42	5.3	543	16.7
school	Female	7	0.8	10	1.2	78	9.7	6	o.8	101	3.1
	Total	106	12.7	144	17.9	346	42.9	48	6.o	644	19.8
Secondary	Male	273	32.7	41	5.1	93	11.5	238	30.0	645	19.8
	Female	23	2.8	7	0.9	26	3.2	37	4.7	93	2.9
	Total	296	35-4	48	6.o	119	14.7	275	34.6	738	22.7
Post-secondary	Male	48	5.7	7	0.9	28	3.5	86	10.8	169	5.2
	Female	3	0.4	0	0.0	15	1.9	6	0.8	24	0.7
	Total	51	6.1	7	0.9	43	5-3	92	11.6	567	17.4

Table 7. Educational level of respondents

Source: Survey data, 2019

3.2.5 Household size and composition

Table 9 presents the average household size and the distribution of household members by selected age groups. The results show a high similarity of average household size across the four countries of about eight persons per household. The results further indicate that between 60% and 67% of respondents have household members within the age ranges of 4–10, 18–35, and 36–60 across the countries, suggesting that most families are predominantly youthful, although the 4–10 group constitute the highest (about 68%). Cameroon and Nigeria have the highest household members (65%) within the age brackets of 36–60 years, suggesting high family labour for production, whereas Ghana has 57% of household members within this age group. Households with persons aged above 60 years constituted about 39%. This indicates an ageing farming labour, which could affect the labour force required for farm operations.

From *Table 10*, about 89% of respondents belonged to a farmer association, 70% in Cameroon, 92% in Côte d'Ivoire, and 97% in Ghana and Nigeria. Overall, about 15% of respondents who belonged to farmer groups were females, and 75% of total female respondents were members of farmer groups. Côte d'Ivoire has the least number of female respondents who were members of farmer groups (4.9%). Respondents could be targeted using their groups as entry points. However, female respondents will probably require additional strategies to be reached with critical information.

Marital	Sex	Can	neroon	Côte	d'Ivoire	G	hana	Ni	geria	т	otal
status		Ν	= 824	Ν	= 803	N	= 789	N	= 798	N =	3214
		Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent
Single	Male	56	6.8	29	3.6	18	2.3	18	2.3	121	3.8
	Female	15	1.8	5	0.6	7	0.9	1	0.1	28	0.9
	Total	71	8.6	34	4.2	25	3.2	19	2.4	149	4.6
Married	Male	417	50.6	600	74.7	513	65.0	618	77.4	2148	66.8
	Female	26	3.2	23	2.9	122	15.5	102	12.8	273	8.5
	Total	443	53.8	623	77.6	635	80.5	720	90.2	2421	75-3
Divorced	Male	13	1.6	3	0.4	21	2.7	1	0.1	38	1.2
	Female	5	0.6	4	0.5	38	4.8	1	0.1	48	1.5
	Total	5	0.6	7	0.9	38	4.8	1	0.1	51	1.6
Widowed	Male	25	3.0	11	1.4	12	1.5	1	0.1	49	1.5
	Female	45	5.5	10	1.2	72	9.1	51	6.4	178	5.5
	Total	70	8.5	21	2.6	84	10.6	52	6.5	227	7.1
Partner	Male	227	27.5	114	14.2	4	0.5	5	0.6	350	10.9
	Female	8	1.0	4	0.5	3	0.4	1	0.1	16	0.5
	Total	235	28.5	118	14.7	7	0.9	6	o.8	366	11.4

Table 8. Marital status of the respondents

Source: Survey data, 2019

Table 9. Household size and composition

		Can	neroon	Côte	d'Ivoire	G	hana	Ni	geria	T	otal
Age (years)	Sex	N = 8	38 (4278)	N = 80	03 (7016)	N = 8	17 (3974)	N = 80	o5 (386 <u>9</u>)	N : (19	= 3263 9,137)
		Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent
Under 4	Male/female	456	54.3	785	11.2	313	38.3	304	37.8	1858	9.7
4–10	Male/female	611	72.7	1507	21.5	545	66.7	511	63.5	3174	16.6
11–17	Male	447	53.2	787	11.2	409	50.1	452	56.1	2095	10.9
	Female	399	47.5	653	9.3	384	47.0	351	43.6	1787	9.3
18–35	Male	513	61.1	951	13.6	506	61.9	473	58.8	2443	12.8
	Female	556	66.2	904	12.9	500	61.2	464	57.6	2424	12.7
36–60	Male	547	65.1	633	9.0	472	57.8	525	65.2	2177	11.4
	Female	450	53.6	564	8.0	500	61.2	482	59.9	1996	10.4
Above 6o	Male	163	19.4	139	2.0	177	21.7	180	22.4	659	3.4
	Female	136	16.2	93	1.3	168	20.6	127	15.8	524	2.7
Ave. HH size	Male/female	8		9		7		7		7	

Group membership	Sex	Can N	neroon = 837	Côte N	d'Ivoire = 8o3	G N	hana = 809	Ni N	geria = 799	T N =	otal = 3248
		Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent	Freq.	Percent
Yes	Male	523	62.5	706	87.9	561	69.3	633	79.2	2423	74.6
	Female	68	8.1	39	4.9	225	27.8	149	18.6	481	14.8
	Total	591	70.6	745	92.8	786	97.2	782	97.9	2904	89.4
No	Male	215	25.7	51	6.4	7	0.9	10	1.3	283	8.7
	Female	31	3.7	7	0.9	16	2.0	7	0.9	61	1.9
	Total	246	29.4	58	7.2	23	2.8	17	2.1	344	10.6

Table 10. Group membership

Source: Survey data, 2019

3.2.6 Assets and control of productive resources

The respondents' access and control of productive resources is presented in *Table 11*. On average, respondents had over 22 years of cocoa farming experience, with Cameroon the shortest (about 20 years) and Nigeria the longest (26 years). With regards to the number of farm plots, an average of two plots per farmer was established across the countries and across genders (male/female). On the average farm size, a minimum of two hectares per household was recorded across Cameroon, Ghana and Nigeria, with Côte d'Ivoire recording about three hectares. Ghana had the lowest average farm size of about 1.4% for female respondents, whereas Côte d'Ivoire, Cameroon, and Nigeria have two or over two hectares for females.

Variable	Sex	Cameroon (N = 838)	Côte d'Ivoire (N = 801)	Ghana (N = 827	Nigeria (N = 807)
Average number of plots	Male	1.72	2.42	2.43	1.80
(No.)	Female	1.71	2.15	2.18	1.97
Average size of Plot	Male	2.60	3.03	1.75	2.31
(estimated) (ha/household)	Female	2.43	2.16	1.38	1.64
Mean farming experience	Male	19.6	19.18	20.5	24.08
(years)	Female	19.9	18.3	22.3	25.7

Table 11. Access and control of productive resources

Source: Survey data, 2019

Table 12 presents a T-test analysis to show the level of significance between male and female farmers in terms of age, cocoa farming experience, and land size. In Cameroon, there is a significant difference between the age of male and female farmers, which indicates that female farmers are relatively older than male farmers. In Côte d'Ivoire, there is a significant difference between the age of male and female farmers; this shows that female farmers are relatively older than male farmers, and male farmers have access to bigger land sizes than female farmers. In Ghana, there is a significant difference between age, cocoa farming experience, and land size of male and female farmers; hence, female farmers are relatively older than male farmer is a significant difference between age, cocoa farming experience, and land size of male and female farmers; hence, female farmers are relatively older than male farmers of male farmers; hence, female farmers are relatively older than male farmers of male and female farmers; hence, female farmers are relatively older than male farmers of a significant difference between age, cocoa farming experience, and land size of male and female farmers; hence, female farmers are relatively older than male farmers are relatively higher cocoa farming experience than male farmers but have access to lesser sizes of land compared to male farmers. In Nigeria, there is a significant

difference between the age and land size of male and female cocoa farmers; female farmers are older compared to male farmers and have access to smaller sizes of land for cocoa farming.

	Variable	Mean (female)	Mean (Male)	T-statistics
Cameroon	Age of farmer	53.12	46.48	0.005**
	Cocoa farming experience	19.99	19.6	0.78
	Land size	2.4	2.66	0.41
Côte d'Ivoire	Age of farmer	51.52	47.39	0.03**
	Cocoa farming experience	18.13	19.04	-0.596
	Land size	2.16	3.03	0.001**
Ghana	Age of farmer	53.79	50.24	0.004**
	Cocoa farming experience	22.47	20.46	0.018**
	Land size	1.38	1.75	0.03**
Nigeria	Age of farmer	53.79	50.24	0.003**
	Cocoa farming experience	25.77	24.07	0.12
	Land size	1.64	2.31	0.01**

Table 12. Test of significance between mean values of male and female farmers

Source: Survey data, 2019, ** Significant at 5%

3.2.6.1 Land ownership status

Obtaining insight into the land tenure system and ownership of cocoa farmlands is key for the establishment of the CocoaSoils satellite trials. To understand this, respondents were asked about their ownership of the cocoa-cultivated lands. Table 13 shows that about 51% of the respondents inherited their main farms, and 28% bought theirs, while about 7% were sharecroppers across the countries. However, there were slight differences in the countries regarding other forms of ownership status. About 37% and 38% of respondents in Cameroon and Nigeria, respectively, bought their main cocoa farmlands, whereas Ghana was split between sharecropping (19%) and gift (14); in Côte d'Ivoire, about 63% of respondents inherited their lands. These ownership statuses should be considered in the selection and implementation of the research trials to enable continuity and avoid conflicts.

3.2.6.2 Labor types per ISFM practice used by respondents

The labour types available to respondents for cocoa production based on the major activities being conducted on their farms were assessed. *Table 14* shows that respondents have used similar labour types across the countries for common farm activities. These include family labour, temporary hires (daily), year-round paid labour, and farmers' helping groups. However, the intensity of using a type of labour depends on the activity in question.

Family labour is, however, the most commonly used for all types of farm activities across the four countries. Nigeria used, to some extent, temporary hire (daily) as the second most used type of labour. Although the majority of respondents (68% and 50%) indicated having children between the ages of 4 and 0 and 11–17, respectively, which may have a perception of child labour, the PPI score showed that most of these children are enrolled in school. This suggests

that family labour could be provided by other age categories (18–60), of which 61% of respondents indicated having family members (including themselves) within this group.

3.2.6.3 Segmentation of respondents using climate smart cocoa (CSC) implementer

The Climate Smart Cocoa Implementer is an app that segments farmers into various resource endowment groups using parameters such as land and household sizes, age of farms, contact with extension or numbers of training, etc. This section seeks to segment the baseline farmers using the key questions from the CSC Implementer app. This is to assist in identifying the kind of farmers and how they relate to the uptake of practices in the four countries.

Status	Sex	Can	neroon	Côte	d'Ivoire	G	hana	Ν	igeria	٦	Fotal
		Ν	= 832	Ν	= 803	Ν	= 814	Ν	= 792	N :	= 3241
		Freq	Percent	Freq	Percent	Freq	Percent	Freq	Percent	Freq	Percent
Bought	Male	276	33.2	202	25.2	59	7.2	241	30.4	576	23.6
	Female	32	3.8	4	0.5	16	2.0	63	8.0	111	4.6
	Total	308	37.0	206	25.7	75	9.2	304	38.4	687	28.2
Caretaker	Male	5	o.6	5	0.6	59	7.2	34	4.3	98	4.0
	Female	3	0.4	0	0.0	5	0.6	7	0.9	15	0.6
	Total	8	1.0	5	o.6	64	7.9	41	5.2	113	4.6
Gift	Male	44	5.3	32	4.0	63	7.7	64	8.1	171	7.0
	Female	8	1.0	5	0.6	47	5.8	5	0.6	60	2.5
	Total	52	6.3	37	4.6	110	13.5	69	8.7	231	9.5
Inherited	Male	405	48.7	468	58.3	262	32.2	281	35.5	948	38.9
	Female	56	6.7	34	4.2	149	18.3	83	10.5	288	11.8
	Total	461	55-4	502	62.5	411	50.5	364	46.0	1236	50.7
Sharecropping	Male	2	0.2	50	6.2	118	14.5	12	1.5	132	5.4
	Female	1	0.1	3	0.4	36	4.4	2	0.3	39	1.6
	Total	3	0.3	53	6.6	154	18.9	14	1.8	171	7

Table 13. Land ownership status²

Source: Survey data, 2019

Table 15 presents a distribution of responses to key questions from the CSC Implementer app. Analysis across the four countries shows that most farmers received extension contact/training less than ten times in the 2017/18 cocoa cropping season. Most respondents have household sizes below 15, and most cocoa farms are within the age range of mature and adult cocoa, except in Nigeria, where old cocoa farms dominate them. Most farm sizes in Cameroon, Côte d'Ivoire, Ghana, and Nigeria are below 2 ha.

² Land ownership is based on plot 1 of the respondents

Type of Practice	Labor Type	Came	roon		Côte	d'Ivoire			Ghana			Nigeria	
		Gende distribu labor t	r ution of ype used	%			%	Gender distrib labor ty	r ution of ype used	%	Gende distrib labor t	er oution of type used	%
		Male	Female		Male	Female		Male	Female		Male	Female	
Land preparation	Family labor	693	81	64.8	698	39	93.1	113	56	67.3	548	116	45.7
	Temporary hires (daily)	122	14	11.3	37	3	5	24	15	15.5	376	88	31.9
	Year-round paid labor	152	26	14.9	11	3	1.7	1	2	1.2	241	58	20.6
Crop	Family labor	671	74	54.6	658	38	94.1	889	365	54.8	590	127	48.2
management (pruning, weeding, disease	Farmers' helping groups	158	13	12.5	8	0	1.1	228	72	13.1	28	5	2.2
management, fertilizer	Temporary hires (daily)	207	18	16.5	20	2	2.9	367	178	23.8	362	89	30.3
application)	Year-round paid labor	189	34	16.2	11	3	1.9	15	9	1.0	224	52	18.5
Shade	Family labor	672	67	74.1	746	43	98.5	356	146	89.2	618	121	60.0
management	Farmers' helping groups	63	5	6.8	3	0	0.4	22	8	5.3	28	7	2.8
	Temporary hires (daily)	29	4	3.4	4	2	0.7	10	10	3.5	183	58	19.6
	Year-round paid labor	124	27	15.1	2	1	0.4	1	3	0.7	90	13	8.4

Table 14. Frequency distribution of access to labour³ by gender

Source: Survey data, 2019

3.3 Poverty Probability Index

3.3.1 Distribution of households along the PPI scale

The Poverty Probability Index (PPI), also referred to as the "Progress out of Poverty Index", was used to determine the likelihood that respondents' households were living below the poverty line. The survey used the ten (10) PPI questions specific for each country on household characteristics and asset ownership to score the likelihood that the household is living below the poverty line. The individual household scores were used to compute the average score for the entire sample. This section allows us to measure the poverty outreach (i.e., the portion of households who live below a chosen poverty line), improve the performance of the intervention among the resource-poor, and track poverty over time (<u>https://www.povertyindex.org/about-us</u>). This is also relevant to assess the probability of adoption of the ISFM components being introduced to households and mechanisms or strategies based on the score of participating households.

CSC Implementer parameter	Cam	eroon	Côte d	'Ivoire	Gha	ana	Ni	geria
	Freq.	%	Freq.	%	Freq.	%	Freq.	%
Number of extension	on contacts	s/training				-		
0	510	61.2	187	23.8	111	13.7	74	9.3
1–5	272	32.6	545	69.2	563	69.4	384	48.2
6–10	29	3.5	50	6.4	122	15	170	21.4
11–15	9	1.1	3	0.4	13	1.6	77	9.7
16–20	8	1	1	0.1	0	0	65	8.2
21–25	1	0.1	0	0	2	0.2	14	1.8
26–30	0	0	0	0	0	0	5	0.6
31–35	1	0.1	0	0	0	0	1	0.1
36–40	1	0.1	0	0	0	0	4	0.5
41-45	0	0	0	0	0	0	1	0.1
46–50	1	0.1	0	0	1	0.1	0	0
51-55	1	0.1	0	0	0	0	1	0.1
56–60	0	0	1	0.1	0	0	0	0
61–65	1	0.1	0	0	0	0	0	0
66–70	0	0	0	0	0	0	0	0
Total	834	100	787	100	812	100	796	100
Household size								
1–5	262	31.3	194	24.7	263	32.4	256	32.2
6–10	396	47.3	377	48	456	56.2	419	52.6
11–15	132	15.8	151	19.1	72	8.8	98	12.3
16–20	37	4.4	44	5.6	17	2.1	19	2.4
21–25	7	0.8	13	1.7	4	0.5	3	0.4
26–30	3	0.4	4	0.5	0	0	1	0.1
31-35	0	0	2	0.3	0	0	0	0
36–40	0	0	1	0.1	0	0	0	0
Total	837	100	786	100	812	100	796	100

Table 15. Segmentation of respondents using CSC

CSC Implementer	Cam	eroon	Côte d	'Ivoire	Gha	ana	Ni	geria
	Freq.	%	Freq.	%	Freq.	%	Freq.	%
Age of cocoa								
1-3	37	4.4	45	5.7	13	1.6	19	2.4
4-13	288	34.4	254	32.3	241	29.7	120	14.9
14–25	282	33.6	308	39.1	355	43.7	235	29.2
>25	231	27.6	180	22.9	203	25	431	53.5
Total	838	100	787	100	812	100	805	100
Farm size								
0-2	485	57.9	441	56.1	684	84.2	561	70.5
3-5	244	29.1	268	34.1	106	13.1	172	21.6
6–8	56	6.7	64	8.1	14	1.7	39	4.9
9–10	19	2.3	7	0.9	5	0.6	8	1
>10	34	4	6	0.8	3	0.4	16	2
	838	100	786	100	812	100	796	100

The number of extension contacts is used to replace the number of years of training received in cocoa since the latter is not a question in the baseline survey.

Figure 3 shows the distribution of households along the PPI scale. It shows that different percentages of households fall within different PPI scales. This indicates that poverty rates were varied among the sampled households. Considering the peak points for the distributions, the results indicate that about 26% of households in Cameroon fall within the PPI scale of 15–19 and 35–39, whereas a greater part of the population falls within the 5–9 and 70–74 scales (Figure 3). Due to the complete lack of a look-up table for Cameroon, their probability rates were not computed. Côte d'Ivoire, Ghana, and Nigeria had the most households falling within 15–19 and 75–74.

3.3.2 Poverty probability scores across countries

Using the average⁴ of the PPI scores, Cameroon had an average of 41% poverty rate among the sampled households. With a confidence level of 99% and a margin of error of 5%, it can be estimated that the poverty rate among households in Cameroon lies between 36% and 46%. Also, Côte d'Ivoire had an average poverty rate of 32.6% among its respondents, putting its households in the poverty percentage range of 30% to 40%. Similarly, Ghana had an average poverty rate of 24.9% among its sampled households, and this indicates Ghana's poverty rate among sampled farmers lies between 20% and 30%, whereas Nigeria lies between 32% and 42% using the international poverty line of \$1.25/day (2005 PPP lines).

3.4 Awareness and use of Integrated soil fertility management (ISFM) practices

This section presents respondents' access to training and extension services, access to credit and sources, awareness and use of the various components of ISFM, and their major determinants (drivers of use) across the three countries. The section also presents the relationship between awareness levels and the use of the various ISFM components.

Integrated soil fertility management (ISFM) is defined as a set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs, and improved germplasm

⁴ Averages for countries computed using PPI scorecards, data analysis tool

combined with the knowledge of how to adapt these practices to local conditions, aiming at maximizing agronomic use efficiency of the applied nutrients and improving crop productivity (Vanlauwe et al., 2015). As such, ISFM is not a single technology but a set of technology components that are ideally co-applied in the same plot (referred to as "complete ISFM"). These components need to be applied correctly, hence the reference to "good agronomic practices".

3.4.1 Access to extension services, training, and credit services

Access to information is a key element of awareness. Respondents' access to training and extension services is presented in *Table 16*. Generally, an average of 73% of farmers had participated and or received extension services across the four countries, the majority of whom were male (60%). Though there were slight country differences between 77% and 92%, a majority of those who had not had access to training and extension services (27%) were females (15%). Ghana and Nigeria have 30% and 20% female participation in training and access to extension services, respectively, whereas Cameroon and Côte d'Ivoire have about 7.5% and 2.3%, respectively. The training focused on pre-planting practices such as nursery and land preparation, agronomic practices, and input use, including organic and inorganic fertilizers, husk management, pruning and postharvest processing, including pod breaking, fermentation and bean drying, and marketing and financial management.

Table 17, which focuses on the respondents who have received training and extension services, shows the number of respondents per training component. The results indicate 100% access to training and extension services within the last year across Ghana and Nigeria in Farm management and agronomic practices, Postharvest processing, and Marketing/Financial management, whereas Côte d'Ivoire and Cameroon had slightly less access. In all, Ghana has the highest female participation in all training and extension services (30%). With regards to sources of the training and extension services, farmers obtained information on the various ISFM components from diverse sources, including government/public extension agencies, agricultural NGOs, private companies, fellow farmers, agricultural development programs (ADPs), and other extension providers (Figure 4). The analysis shows that government extension agencies, agricultural NGOs /private companies, and other extension providers were the widely accessed sources of knowledge. The main sources/providers of training and extension services are government extension agencies, NGOs, and private companies in the cocoa industry across the four countries. In addition, Ghana had Government agencies as the second most important service provider, with Côte d'Ivoire, Cameroon, and Nigeria having other providers as the second highest. Though farmers receive extension services and information from other sources, such as other farmers, agro-input dealers within their communities, and ADPs, these are minimal.

20.00 10.00 10.00	_		I			ı.	ılı	Ilh	ıll				المع							
Sehe	04	5 9	10_	15_	20_	25_	30_	35_	40_	45_	50_	55_	60_	65_	70_	75_	80_	85_	90_	95_
no	°_+	5_5	14	19	24	29	34	39	44	49	54	59	64	69	74	79	84	89	94	100
	1.78	2.14	8.20	12.9	11.1	9.04	9.63	12.9	9.99	6.78	5.35	3.33	2.85	1.66	0.48	0.83	0.48	0.12	0.00	0.24
COTE D'IVOIRE	0.13	0.13	1.13	5.76	18.9	17.7	17.6	13.5	11.2	5.89	3.51	2.38	1.25	0.38	0.25	0.00	0.00	0.00	0.00	0.00
GHANA	0.00	0.12	0.12	0.86	5.88	9.18	12.7	15.1	17.0	15.6	9.55	6.61	3.30	1.84	1.22	0.49	0.12	0.00	0.12	0.00
■ NIGERIA	0.26	0.40	1.32	1.46	2.91	4.64	9.93	9.67	13.9	15.5	12.4	12.5	7.15	3.71	2.65	0.93	0.26	0.26	0.00	0.00
										PPI S	CORI	E								
			C	AMEF	ROON	1 🗖	COTI	E D'IV	OIRE		GHAN	١A	NIG	SERIA	L					

Figure 3. Distribution of household along the Poverty Probability index scale

Figure 4. Sources of training and extension services

Table 16. Access to training and extension services

Ext./ trainin	Sex	Cam (8)	eroon 29)	Côte (7	d'Ivoire 78)	Ghana (817)		Nigeri	a (793)	Total (3225		
g		Freq	%	Freq	%	Freq.	eq. %		%	Freq.	%	
Yes	Male	306	36.9	566	72.7	493	60.3	585	73.8	1950	60.4	
	Female	25	3.0	30	3.9	213	26.1	143	18.0	411	12.7	
	Total	331	39.9	596	76.6	706	86.4	728	91.8	2361	73.0	
No	Male	74	8.9	165	21.2	71	8.7	46	5.8	356	11.0	
	Female	424	51.1	17	2.2	40	4.9	19	2.4	500	15.5	
Total 498 60.1		182	23.4	111	13.6	65	8.2	856	27.0			

Source: Survey data, 2019

3.4.2 Access to credit

Access to credit mostly plays a significant role in agricultural production, especially the production of cash crops. The frequency distribution of farmers who requested and received credit compared with the sample size is presented in *Figure 5*.

About one-third of respondents across the countries requested credit (cash) in the last year with good access (*Table 18*). The percentage of respondents who received credit was far higher among male farmers than female farmers (*Table 19*). However, several respondents did not request credit and gave several reasons why (*Figure 6*).

Respondents received credit from diverse sources, including CBOs, friends, banks/microfinance institutions, NGOs, private lenders, self-help, and others. Friends and other sources provide the most access to credit. About 41% of credit was utilized on farm input, seeds, and fertilizer, and about 22% was utilised on school fees. The rest was used on other household expenditure items (*Table 20*). This suggests that an increased request and access to credit could facilitate the purchase and use of farm inputs, seed, and fertilizer, including ISFM components.

		Can	neroon	Côte o	d'Ivoire	Gh	ana	Nig	jeria	Tot	al
Type of	Sex	IN = 3:	31 (1500)	IN = (54		IN = (35	700 (26)	= M (36	5720 529)	IN = 2543(1/	- 4179)
Practice/Activity		Freq	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%
		•									
Preplanting	Male	297	89.7	485	62.3	491	69.5	582	79.9	1855	72.9
practices	Female	25	7.6	21	2.7	212	30.0	143	19.6	401	15.8
	Total	322	97-3	506	65.0	703	99.6	725	99.6	2256	88.7
Farm management	Male	264	79.8	560	72.0	493	69.8	585	80.4	1902	74.8
and agronomic	Female	27	8.2	29	3.7	213	30.2	143	19.6	412	16.2
proceed	Total	291	87.9	589	75-7	706	100.0	728	100.0	2314	91.0
Postharvest	Male	298	90.0	549	70.6	493	69.8	585	80.4	1925	75.7
processing	Female	25	7.6	26	3.3	213	30.2	143	19.6	407	16.0
	Total	323	97.6	575	73.9	706	100.0	728	100.0	2332	91.7
Marketing/financial	Male	298	90.0	25	3.2	493	69.8	585	80.4	1401	55.1
management	Female	25	7.6	1	0.1	213	30.2	143	19.6	382	15.0
	Total	323	97.6	26	3.3	706	100.0	728	100.0	1783	70.1
Processing and	Male	296	89.4	5	0.6	492	69.7	577	79.3	1370	53.9
transformation of	Female	25	7.6	0	0.0	213	30.2	143	19.6	381	15.0
beans	Total	321	97.0	5	o.6	705	99.9	720	98.9	1751	68.9

Table 17. Summary of type of training and extension services received

Source: Survey data, 2019; *Numbers in brackets are N for multiple responses by respondents

Figure 5. Request and access to credit

Table 18. Request for credit by gender

Access	Sex	Cam (2	eroon 69)	Côte (2	d'Ivoire 21)	Ghana (266)		Nigeria (145)		Total (901)	
		Freq	%	Freq	%	Freq.	%	Freq	%	Freq	%
Yes	Male	221	82.2	206	93.2	137	16.8	99	12.5	663	73.6
	Female	27	10	11	5	50	6.1	23	2.9	111	12.4
	Total	248	92.2	217	98.2	187	22.9	122	15.4	774	86
No	Male	21	7.8	4	1.8	56	6.9	18	2.3	99	11
	Female	0	0	0	0	23	2.8	4	0.5	27	3
	Total	21	7.8	4	1.8	79	9.7	22	2.8	126	14

Table 19. Access to credit by gender

Request	Sex	Cameroon (827)		Côte d (77	Côte d'Ivoire (779)		Ghana (817)		ria (790)	Total (3213)	
		Freq	%	Freq	%	Freq.	%	Freq	%	Freq	%
Yes	Male	242	29.3	210	27	193	8.9	27	3.4	552	17.2
	Female	27	3.3	11	1.4	73	23.6	118	14.9	349	10.9
	Total	269	32.5	221	28.4	266	32.6	145	18.3	891	28
No	Male	486	58.8	522	67	371	45.4	514	64.7	1893	58.9
	Female	72	8.7	36	4.6	180	22	135	17	423	13.2
	Total	558	67.5	558	71.6	551	67.4	649	81.7	2316	72

Table 20. l	Use of	credit	received
-------------	--------	--------	----------

Use of credit	Camer	roon (248)	Côte d'	Ivoire (217)	Gha	na (187)	Nige	ria (122)	Total (774)	
	Freq.	Percent.	Freq.	Percent.	Freq.	Percent.	Freq.	Percent.	Freq.	Percent.
Buy/hire land										
	1	0.4	3	1.4	5	2.7	3	3.1	12	1.6
Buy fertilizer										
	9	3.6	69	31.8	25	13.3	1	1	104	13.4
Buy seeds										
	2	0.8	2	0.9	0	0	1	1	5	0.6
Buy farm inputs										
	86	34.7	7	3.2	55	29.3	65	66.3	213	27.5
Medical										
expenses	21	8.5	32	14.7	18	9.6	0	0	71	9.7
School fees		-				-				
	40	16.1	62	28.6	45	23.9	20	20.4	167	21.6
Trade										
	4	1.6	4	1.8	15	8	2	2	25	3.2
Other uses										
	85	34.3	38	17.6	25	13.3	30	6.1	173	22.4

Figure 6. Reasons for not requesting credit

3.4.3 Awareness and use of ISFM practices

3.4.3.1 Awareness of ISFM practices

Over the years and as indicated by the high percentage of respondents with access to training and extension services, several ISFM components have been introduced, and farmers have been trained in their application in the study areas across the countries. In this study, respondents were asked to provide information about their knowledge of the various ISFM components that they knew. This section focuses on farmers' awareness of the various components of ISFM and their use of such components.

About 65% of the respondents are aware of at least one component of ISFM, as outlined in Table 21, across the four countries (based on the overall sample size of the survey). The average awareness levels per country stand at 58% in Cameroon, 83% in Côte d'Ivoire, 75% in Ghana, and 59% in Nigeria. Knowledge of the use of mineral fertilizer, pest management, manual weeding, and intercropping in young cocoa is higher, ranging between 80% and 98% in Cameroon and Ghana. In Côte d'Ivoire, as well, knowledge of structural pruning, sanitary pruning, pest management, and manual weeding is very high. Whereas manual weeding had the highest awareness level in Nigeria (91%) and site selection (88%). Knowledge of the use of organic fertilizer was much less in Cameroon and Nigeria except Ghana, whereas awareness of weeding by herbicides was rare in Nigeria (10%) and highest in Ghana (60%). Knowledge of the use of organic fertilizer, use of improved seeds, intercropping in mature cocoa, and use of herbicide was low in Côte d'Ivoire. With the country difference across the different ISFM components, it will require specific review and adjustment to any training content to be delivered to farmers in the study area.

ISFM Component	Came	eroon	Côte d'	Ivoire	Gha	ina	Nige	eria	Тс	otal
	N =	838	N = 8	303	N = 3	827	N =	807	N =	3275
	Freq.	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%
Mineral fertilizer	667	79.6	714	88.9	814	98.4	460	57	3369	82.6
Organic fertilizer	292	34.8	469	58.4	721	87.2	475	58.9	2426	59.5
Structural pruning	560	66.8	735	91.5	658	79.6	475	58.9	3163	77.6
Sanitary pruning	535	63.8	803	100	750	90.7	588	72.9	3479	85.3
Pest management Weeding using	575	68.6	800	99.6	809	97.8	559	69.3	3543	86.9
herbicides	322	38.4	489	60.9	493	59.6	80	9.9	1873	45.9
Manual weeding	633	75.5	803	100	822	99.4	738	91.4	3799	93.2
Presence of shade Use of improved	524	62.5	493	61.4	408	49.3	511	63.3	2429	59.6
varieties	475	56.7	101	12.6	553	66.9	268	33.2	1397	34.3
Site selection Intercropping in young	488	58.2	694	86.4	654	79.1	711	88.1	2547	62.5
cocoa Intercropping in mature	566	67.5	449	55.9	669	80.9	601	74.5	2285	56.03
сосоа	226	27	127	15.8	185	22.4	265	32.8	803	18.9

Table 21. Awareness of ISFM practices in cocoa production

Source: Survey data, 2019

3.4.3.2 Use of ISFM practices

The use of the various ISFM components was computed based on the number of respondents who knew and were aware of such components and being applied or used in one plot or more than one. Table 22 shows the level of use (by frequency and percentage) of each ISFM component per country. The table indicates that there is a strong relationship between awareness and use of the various components except for a few components.

In all, structural pruning, sanitary pruning, pest management, manual weeding, improved varieties, and site selection were the most used practices across the countries. With regards to mineral fertilizer, 78%. 89% and 84% of respondents who were aware in Cameroon, Côte d'Ivoire, and Ghana were using this component, but in Nigeria, only 17% out of 57% who were aware were using this component. Pest management is a component with high awareness and use levels across the countries. Between 80% and 97% of respondents who were aware were using this component as well. Nigeria, however, has the highest use of herbicides (94%) among the 10% of respondents who knew about it. This suggests that an increased awareness level among respondents can increase the level of use as well.

In Cameroon, fertilizer is applied mostly on the first two plots of the respondents (68% of plot 1 and 73% of plot 2), and the most commonly used fertilizers are Agrovert, Folivert, Banzai, Urea, and NPK 20-10-10, which are mainly applied by ring placement and spraying. Fungicides were primarily used to manage blackpod disease, as indicated by respondents. In Côte d'Ivoire, the commonly used fertilizer is NPK 0-23-19, which is mostly applied through ring placement. In Ghana, fertilizer application is done on 85% of the first two plots of respondents. The most commonly used fertilizers are Sidalco, Cocofeed, and Asaasewura, which are mostly applied by ring placement, spraying, and broadcasting. In Nigeria, fertilizer application is done on 6% of plots. The most commonly used fertilizers are NPK 15 -15 -15 and Super Gro, mainly applied by ring placement and spraying.

The sequence of application of these ISFM components was also assessed using the frequency and period of application. For fertilizer application, most respondents applied from January to December, in most cases, across the three countries. In Cameroon, about 22% of respondents applied fertilizer every month of the year regardless of the recommendation to apply in May–June when the rains have stabilized. Pruning is similarly done outside the recommended periods of February and July–November. A similar story exists across Ghana and Nigeria, where fertilizer application is done between March and December. In Côte d'Ivoire, fertilizer application is done between March and June, and from January to December in Nigeria. These inconsistencies could affect the yield levels through these inputs and practices being used by respondents.

ISFM Component	Came	roon	Côte d	l'Ivoire	Gha	ana	Nig	geria	Total	
	Freq.	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%
Mineral fertilizer										
	518	77.7	548	76.8	680	83.5	80	17.4	2374	70.5
Organic fertilizer										
	207	70.9	179	38.3	306	42.4	249	52.4	1120	46.2
Structural pruning										
	424	75.7	568	70.7	573	87.1	399	84	2532	80.1
Sanitary pruning										
	386	72.1	733	91.3	709	94.5	468	79.6	3029	87.1
Pest management										
	460	80	570	71	781	96.5	534	95.5	2915	82.3
Weeding using										
herbicides	150	46.6	59	7.3	273	55.4	75	93.8	616	32.9
Manual weeding										
	607	95.9	783	97.5	822	100	734	99.5	3729	98.2
Importance/presence										
of shade trees	389	74.2	659	82.1	154	37.7	439	85.9	2300	94.7
Use of improved										
varieties	419	88.2	20	19.8	408	73.8	268	100	1115	79.8
Site selection										
	392	80.3	379	54.6	566	86.5	598	84.1	1935	76
Intercropping in young										
сосоа	429	75.8	436	97.1	261	39	508	84.5	1634	71.5
Intercropping in										
mature cocoa	153	67.7	94	74	81	43.8	233	87.9	561	72.9

Source: Survey data, 2019. **Percentages are based on the total number of respondents that are aware of each practice.

3.4.3.3 Correlation between awareness and use of ISFM practices

From *Table 23*, results show a high correlation between awareness and use of the ISFM components. The majority of respondents who were aware of the various ISFM components also used such components.

Table 24 presents a correlation between household characteristics and ISFM components across the four countries. Results show that, in Cameroon, there is a high and positive relationship between the age of farmers and their use of improved planting material; older farmers have a higher demand for improved planting materials, and this may be a result of their quest to benefit from their investments as quickly as possible. In Côte d'Ivoire, there is a positive and significant relationship between education and the use of improved planting material; the more educated farmers tend to have a higher affinity for the use of improved planting material, and this may be explained by their superior knowledge of its benefit.

	Cameroon	Côte d'Ivoire	Ghana	Nigeria
Awareness		Use of ISF	M practices	
Mineral fertilizer	0.340**	0.515**	0.272**	0.288**
Organic fertilizer	0.438**	0.454**	0.294**	0.558**
Structural Pruning	0.552**	0.802**	0.729**	0.676**
Sanitary Pruning	0.485**	0.835**	0.750**	0.435**
Pest management	0.555**	0.683**	0.398**	0.727**
herbicides	0.522**	0.468**	0.541**	0.356**
Manual weeding	0.709**	0.705**	0.255**	0.475**
Shade management Use of improved	0.575**	0.813**	0.447**	0.614**
varieties	0.723**	0.397**	0.669**	0.388**
Site selection Intercropping in young	0.701**	0.328**	0.700**	0.473**
cocoa Intercropping in	0.512**	0.677**	0.297**	0.581**
matured cocoa	0.587**	0.637**	0.546**	0.608**

Table 23. Correlation between awareness and use of ISFM practices

Source: Survey data, 2019. **correlation is significant at 0.01 level (2-tailed).

Reasons	Frequ	encies	
	Male	Female	Total
Limited technical knowledge	42	6	48
Non availability of the input	59	10	69
Lack of cash/credit to buy input	70	13	83
Incompatibility of technology /susceptibility to diseases/ pests	3	0	3
Additional input expensive	34	10	44
Poor taste of new variety	1	2	3
Low yielding after used	4	0	4
Low market prices of output	1	0	1
No market for surplus output	1	1	2
Requires high skills	3	0	3
Content with current practices/variety	4	0	4
Low market demand	0	0	0
Not aware of it	4	1	5
Don't need it (soil is already fertile)	12	2	14
Total	238	45	283

Country	Education	Sex	Age of Farmer	No. of Extension Contacts	Household Size	Size of Farm	Cocoa Farming Experience	Credit Access
Use of improv	ved planting r	naterial					-	
Cameroon	0.04	-0.023	0.063	0.041	0.042	0.031	0.045	0.048
Côte d'Ivoire	0.097**	0.007	-0.023	-0.017	-0.028	-0.073*	-0.065	0.045
Ghana	0.035	0.101**	-0.031	0.044	0.038	0.004	-0.043	0.074*
Nigeria	0.06	0.009	-0.02	0.101**	0.031	0.119**	-0.058	-0.002
Fertilizer appl	lication							
Cameroon	0.077*	0.005	-0.004	0.143**	-0.014	-0.082*	-0.033	0.073*
Côte d'Ivoire	-0.064	0.102**	0.018	0.085*	0.058	0.170**	0.055	0.103**
Ghana	0.095	0.185**	0.018	0.019	0.047	0.056	0.132**	0.101**
Nigeria	0.088	0.059	-0.038	-0.084*	0.128**	0.05	-0.016	0.03
Punning								
Cameroon	0.048	0	0.019	-0.011	0.117**	-0.072*	-0.072	-0.078*
Côte d'Ivoire	-0.055	0.101**	0.031	0.126**	0.068	0.049	-0.039	-0.029
Ghana	-0.033	0.053	0.02	-0.063	-0.061	-0.042	-0.016	0.058
Nigeria	0.042	0.139	-0.035	0.042	-0.055	-0.006	-0.026	0.134**
Weed manage	ement							
Cameroon	-0.033	0.035	0.047	0.057	0.04	-0.004	0.028	-0.014
Côte d'Ivoire	0.016	0.135**	0.01	0.07	0.014	0.053	0	0.034
Ghana	0.015	0.015	-0.001	-0.006	-0.041	0.01	-0.017	0.043
Nigeria	0.015	0.001	-0.028	-0.008	0.024	-0.002	-0.03	0.041
Shade manag	ement							
Cameroon	0.044	-0.011	0.056	0.059	0.132**	-	-0.007	-0.057
						0.093**		
Côte d'Ivoire	0.015	0.037	0.022	0.036	0.007	-0.047	-0.097**	0.077**
Ghana	0.03	-0.006	0.026	-0.075	-0.005	0.023	-0.075*	-0.031
Nigeria	-0.011	0.0047	-0.027	0.034	0.05	-0.002	-0.05	0.064
Intercropping	in young coo	oa						
Cameroon	0.067	-0.077*	0.077*	0.074*	0.112**	-0.097*	-0.047	-0.004
Côte d'Ivoire	-0.012	0.022	-0.078*	0.101**	0.041	0.012	0.008	0.067
Ghana	0.035	-0.031	0.017	-0.008	0.065	-0.017	-0.076*	0.009
Nigeria	0.014	0.034	-0.012	0.114**	0.008	-0.022	0.016	-0.065
Pest manager	ment							
Cameroon	0.069*	0.006	0.079	0.072*	0.068*	0.02	0.027	0.01
Côte d'Ivoire	-0.057	0.053	0.035	0.029	0.028	0.065	0.089*	0.014
Ghana	0.025	0.098**	0.009	0.006	-0.024	0.041	-0.009	0.043
Nigeria	-0.007	0.044	-0.039	0.086	-0.02	-0.067	0.03	0.119

Table 24. Correlation between household and characteristics and ISFM components

Source: Survey data, 2019. **correlation is significant at 0.01 level (2-tailed).

Sex has a positive and significant relationship with the use of improved planting material in Ghana, which means male farmers use improved planting materials more than female farmers; this can be explained by their greater involvement in extension programs than female farmers. In Nigeria, the number of extension contacts has a positive and significant relation with the use of improved variety; this means extension education has a good influence on farmers' use of improved planting material.

Education and number of extension contacts have a positive and significant relationship with fertilizer application in Cameroon; hence the more educated a farmer is, the higher the chance of applying fertilizer, and the more extension delivered to a farmer also shows a higher chance

of application of fertilizer. In Côte d'Ivoire, the sex of the farmer, number of extension contacts, size of farm, and credit access all have a positive and significant relationship on the application of fertilizer. This means male farmers have a higher chance of applying fertilizer which can be explained by their better economic standards as compared to female farmers. The number of extension contacts also means more education on the use of fertilizer, which will influence positively the use of fertilizer. Farmers with higher plot sizes are applying fertilizer more because most are likely to be more resourced and will have better experience with fertilizer application. Credit access means more money for a farmer which means they are better positioned to purchase and use more fertilizer on the farm. In Ghana, sex, cocoa farming experience, and credit access have a positive and significant relationship with fertilizer application, this means more male farmers are applying fertilizer, and this can be supported by them being relatively more resourced than female farmers. More experienced cocoa farmers have tried various ways of increasing their yield, so they have a higher tendency to use fertilizer on their farms. Credit access also means more money for the farmer so they can invest in the purchase of fertilizer for application. The larger size of farmers has a positive and significant relationship with farmers' fertiliser application in Nigeria; this might be explained by the availability of labour on their end during application.

In Cameroon, household size has a positive and significant relationship with pruning; since pruning is a labour-intensive activity, the availability of more hands to assist will enhance its practice. In Côte d'Ivoire, sex and number of extension contacts have a positive and significant relationship with pruning, meaning more male farmers tend to carry out pruning than females, and this can be explained by its labour intensiveness. Furthermore, the higher extension contacts a farmer receives means there is more monitoring on his farm, so they will be under compulsion to prune and keep their farm well pruned. In Ghana, the sex of the farmer and credit access have a positive relationship with pruning practices. This means male farmers who can carry out more labour-intensive activities have a higher chance of pruning, and farmers who have access to credit have the capital to hire more labourers to help prune their farms. In Nigeria, credit access has a positive and significant relationship with pruning; this means that the availability of capital will enhance farmers' ability to engage more labourers on the farm to prune.

The number of extension contacts has a positive and significant relationship with weed management in Cameroon; this means that farmers will carry out weed management with more monitoring from extension officers. In d'Ivoire, sex has a positive and significant relationship with weed management. This means male farmers are more likely to carry out weed management activities, and this is explained by its labour intensiveness. Credit access by farmers in Ghana and Nigeria has a positive relationship with weed management; this means with more money, these farmers are able to engage labourers to carry out weeding on their farms.

Household size has a positive and significant relationship with shade management in Cameroon; farmers with a larger household size may be prone to grow more trees on their farms due to available labour. In Côte d'Ivoire and Nigeria, credit access has a positive and significant relationship with shade management; this means farmers have money to purchase and plant shade trees of their choice and in the correct quantity on their farms. In Ghana, the education and age of a farmer have a positive relationship with shade management; hence, more educated

farmers appreciate the benefit of shade management and tend to practice it. Also, older farmers with more experience may have benefited from shade management over the years, hence their practice of shade management.

The number of extension contacts, age of the farmer, and household size have a positive and significant relationship with intercropping in cocoa in Cameroon. The increased interaction with extension officers tends to increase farmers' interest in planting crops in their cocoa farms. Aged farmers and households with a higher population have high labour available and will need more of these crops to supplement food at home. In Côte d'Ivoire, the number of extension contacts has a positive and significant relationship with intercropping in cocoa; this means more extension visits are likely to increase farmers' interest in planting other crops with cocoa. Household size has a positive and significant relationship with intercropping among Ghanaian farmers. This means the higher the household size, the more labour tends to be available to be engaged, and more people need to be fed at home; hence, the motivation is high for growing supplementary foods.

Among Cameroon farmers, the number of extension contacts and household size have a positive and significant relationship with pest management. Extension agents' frequent visits ensure farmers conform to good practices, and a larger household size provides extra labour to farm activities. In Côte d'Ivoire, cocoa farming experience has a positive and significant relationship with pest management; more experienced cocoa farmers who might have experienced the effect of pests on their cocoa yield will be forced to take measures against it more. The sex of the farmer has a positive and significant relationship with pest management in Ghana; male farmers tend to engage in pest management more than females, and this may be explained by them being better resourced. In Nigeria, the number of extension contacts has a positive and significant relationship with pest management; hence, the more extension visits, the more farmers are likely to practice pest management activities.

3.4.4 Productivity of cocoa plantations

3.4.4.1 Age of plantations surveyed

Available studies show that the age of a cocoa plantation determines, to a larger extent, the productive nature of the farm. Productive farms are categorized as mature and adult between the ages of 4 and 13 years and 14 and 25 years, respectively (Asare et al., 2018).

Table 25 shows the age categories of the first plots (plot 1) of each respondent. Côte d'Ivoire, Cameroon, and Ghana have 71%, 68%, and 73% of first plots within the mature and adult categories respectively. Nigeria has about 44% of the first plots within the mature and adult categories, and about 54% falls within the old category. This suggests that more farms are old in Nigeria.

The second plot (plot 2) of the respondents indicates a similar trend of 60%, 71%, and 74% for Cameroon, Côte d'Ivoire, and Ghana, respectively, as being in the mature and adult categories, whereas, in Nigeria, most second plots are within the old age category.

Country	1-3 years		4-13	4–13 years		years	> 25	> 25 years	
	Freq.	%*	Freq.	%*	Freq.	%*	Freq.	%*	
Cameroon	37	4.4	288	34.4	282	33.6	231	27.6	
Côte d'Ivoire	45	5.7	254	32.3	308	39.1	180	22.9	
Ghana	13	1.6	241	29.7	355	43.7	203	25.0	
Nigeria	19	2.4	120	14.9	235	29.2	431	53.5	

Table 25. Age of cocoa plantation

Source: Survey data, 2019; * percentage per country

3.4.4.2 Previous land use of plantations surveyed

Previous land use is a household factor in the survey to ascertain the use of forests for cocoa establishment. The previous land use of the first two plots was assessed for all respondents. *Table 26* shows that 66%, 50%, and 70% of the first two plots of respondents were previously forests in Cameroon, Côte d'Ivoire, and Nigeria, respectively. In contrast, Ghana has an almost equal distribution between fallow and forest (39% and 34%, respectively) and about 18% old cocoa trees. Having previous land uses as forest and fallow suggests a possible expansion of plots into such areas (if available) and needs to be monitored.

3.5 Yield distribution and average yield estimate

Yields are computed at the farm level, using the total production of cocoa beans as reported by farmers in the last three years against the estimated land area. Table 27 indicates that about 50% to 77% of respondents produce below 200 kg/ha and up to 600 kg/ha, with an average of about 429 kg/ha in Cameroon, about 391 kg/ha in Côte d'Ivoire, about 526 kg/ha in Ghana, and 369 kg/ha in Nigeria (Table 28). About 32.4 % of respondents also have yields above 2000 kg/ha, with Cameroon having over 15% of these respondents.

These data exclude outliers. Though the yield estimates are close in Cameroon, Côte d'Ivoire, and Nigeria, there are slight differences between genders, with male respondents having slightly higher yields than their female counterparts.

3.6 Understanding the yield differences—below and above potential yields

To understand the causes of the yield differences, the management practices carried out by respondents whose yields are above the potential yield level were analyzed in *Figure* 7, which suggests what such respondents are doing differently.

Table 30 shows the test of significance between the various ISFM components used and the yields computed. The use of fertilizer has a positive relationship with yield in Cameroon, Côte d'Ivoire, and Ghana. In Nigeria, this has a negative relation; however, the low use of fertilizer and at inappropriate periods in Nigeria might have accounted for this.

The use of fungicides also has a positive relationship with yields in Cameroon, Côte d'Ivoire, Ghana, and Nigeria. In Cameroon, Côte d'Ivoire, and Ghana, this relationship is significant as well.

Pruning, use of improved variety, and shade management have a positive relationship with yield in Cameroon, Côte d'Ivoire, and Ghana; however, in Nigeria, these relationships are negative.

The age of cocoa farms has a positive and significant relationship with yield in Cameroon, Côte d'Ivoire, Ghana, and Nigeria.

Type of land use	Cameroon		Côte d'	lvoire	Ghar	a	Nige	ria
	No. of	%	No. of	%	No. of	%	No. of	%
	Plots		PIOTS		PIOTS		Plots	
Cultivated_Annual	16	1.3	8	0.9	79	5.9	51	4.9
Cultivated_	53	4.4	198	22.9	28	2.1	79	7.7
Perennial								
Fallow	40	3.3	150	17.4	521	39.1	73	7.1
Forest	800	66.3	432	50.1	447	33.6	721	69.9
Homestead	15	1.2	0	0	2	0.1	0	0
Old_cocoa_trees	115	9.5	73	8.5	244	18.4	103	10
Rented_out	6	0.5	0	0	2	0.1	2	0.2
Savanna	161	13.4	2	0.2	9	0.7	2	0.2
Wood	1	0.1	0	0	0	0	1	0.1
Total Plots (1 and 2)	1207	100	863	100	1332	100	1032	100

Table 26. Previous land use⁵

Source: Survey data, 2019

The average yields of respondents across the countries were analyzed using the potential yields of 500 kg/ha as the benchmark. Table 28 shows the average yield across the four countries and the yearly yields using a potential yield cap of 500 kg/ha. Table 29 presents average yields of respondents using uncapped raw responses from respondents.

Yield distribution	Car	neroon	Côte d	l'Ivoire		Ghana		Nigeria
(kg/ha)	Freq.	%	Freq.	%	Freq.	%	Freq.	%
0-200	157	18.7	220	28	147	18.1	293	36.8
201–400	145	17.3	179	22.8	179	22	212	26.6
401–600	113	13.5	153	19.5	129	15.9	106	13.3
601–800	116	13.8	92	11.7	90	11.1	60	7.5
801–1000	66	7.9	60	7.6	73	9	34	4.3
1001-1200	45	5.4	22	2.8	55	6.8	21	2.6
1201–1400	29	3.5	17	2.2	25	3.1	7	0.9
1401–1600	14	1.7	7	0.9	22	2.7	5	0.6
1601–1800	12	1.4	3	0.4	19	2.3	5	0.6
1801–1900	4	0.5	2	0.2	6	0.7	2	0.3
1901–2000	9	1.1	1	0.1	7	0.9	3	0.4
>2000	128	15.2	30	3.8	60	7.3	48	6.1
TOTAL	878	100	786	100	812	100	796	100

Table 27. Yield distribution

Source: Survey data, 2019

⁵ The previous land use was assessed using both plots 1 and plot 2 of the respondents

Avg.	Cameroon			(Côte d'Ivoir	e	Ghana				Nigeria	
plot size	Male	Female	Avg.	Male	Female	Avg.	Male	Female	Avg.	Male	Female	Avg.
(na)	2.6	2.4	2.5	2.7	2.2	2.5	1.8	1.4	1.6	2.3	1.6	2
Yield	432.9	370.7	401.8	432.5	343.2	387.9	606.	473.7	539.9	400.	340.7	370.8
2015/16							1			9		
Yield	461.4	397.5	429.5	437.4	377.1	407.3	593.1	450.6	521.9	403.	330.3	367.1
2016/17										9		
Yield	432.9	403.8	454·9	426	330.7	378.3	592.	438.7	515.7	403.5	335.3	369.4
2017/18							6					
Avg. 3 Yrs	466.8	390.7	428. 8	432	350.3	391.2	597.3	454-3	525.8	402. 8	335.4	369.1

Table 28. Average yield (kg/ha) — potential yield

Table 29. Average yield (kg/ha) — raw yield data

Avg.	Cameroon			Côte d	'Ivoire		Ghana			Nigeria		
plot size	Male	Female	Average	Male	Female	Average	Male	Female	Average	Male	Female	Average
(ha)	2.60	2.43	2.5	2.72	2.20	2.46	1.75	1.38	1.6	2.31	1.64	2
Yield 2015/16	893.7	728.9	811.3	503.5	343.2	423.4	891.4	616.6	754.0	571.6	409.2	490.4
Yield 2016/17	978.5	735.2	856.9	527.1	377.1	452.1	873.6	611.5	742.6	556.9	451.5	504.2
Yield 2017/18	2928.5	735.7	1832.1	469.5	735.7	602.6	844.8	598.5	721.7	444.0	286.4	365.2
Avg. 3 Yrs	1600.2	733.3	1166.8	500.0	485.3	492.7	869.9	608.9	739-4	524.2	382.4	453.3

Figure 7. Management practices carried out by respondents whose yields are above the potential and ISFM components

Table 31 shows the relationship and test of significance between the various ISFM components used and the yields above potential computed. Pruning has a positive relationship with yield in

Cameroon, Côte d'Ivoire, Ghana and Nigeria. The application of fungicide has a positive relation with yield in Cameroon, Côte d'Ivoire and Nigeria but a negative one in Ghana.

Shade management has a positive relationship with yield in Cameroon, Côte d'Ivoire, Ghana and Nigeria. Fertilizer application has a positive relationship with yield in Cameroon and Côte d'Ivoire but a negative one in Ghana and Nigeria. The use of improved variety has a positive relationship with yield in Cameroon and Nigeria. The age of cocoa has a positive relationship with yield in Cote d'Ivoire only.

Parameter	Cameroon	Côte d'Ivoire	Ghana	Nigeria
Improved variety	0.016	-0.103**	0.046*	-0.033
(Hybrid)				
Fertilizer	0.021	0.151**	0.154**	0.021
Fungicide use	-0.048	0.122**	0.093*	0.047
Pruning	0.035	0.218**	-0.048	-0.057
Weed management	-0.075	0.077*	0.022*	-0.046
Blackpod	-0.048	0.122**	0.093*	0.047
management				
Shade	0.078	0.076**	-0.058	0.026
Age of cocoa farm	0.035	0.271**	0.049	0.140**

Table 30. Correlation between yield below potential and ISFM components

Source: Survey data, 2019. ** significant at 0.01 level and *significant at 0.05 level

Parameter	Cameroon	Côte d'Ivoire	Ghana	Nigeria
Improved variety	0.059	-0.117	-0.196	0.168
(Hybrid)				
Fertilizer	0.044	0.575*	-0.274	-0.121
Fungicide use	0.055	0.169	-0.440**	0.185
Pruning	0.065	0.218	0.115	0.240
Weed management	-0.218*	0.117	-0.172	0.067
Blackpod	0.055	0.169	-0.440**	0.185
management				
Shade	0.075	0.127	0.107	-0.265
Age of cocoa farm	-0.060	0.436	-0.139	-0.115

Table 31. Correlation between yield above potential and ISFM components

Source: Survey data, 2019. ** significant at 0.01 level and *significant at 0.05 level

3.7 Total household income and expenditure

3.7.1 Total household income

The survey assessed the various sources of household income and the contribution of these sources to the overall household income. The income in this analysis is the gross income obtained from each source.

From *Table 32*, the surveyed households had four main sources of income: cocoa, livestock, other crops, and off-farm income. Gross income from cocoa is the highest for almost all respondents (male/female) except female respondents in Ghana who rather had off-farm income as their highest source of income.

There are also differences in incomes between males and females across the four countries. From Figure 8, cocoa contributes between 53% and 61% to household incomes (both male and female) in the four countries, except for female respondents in Ghana, who had 35% of income from cocoa and 59% from off-farm activities. Off-farm income was the second highest source of income for all other respondents across the four countries.

Source of income	Cam	eroon (N =	= 838)	Côte d'Ivoire (N = 8o3)		Ghana (N = 817)			Nigeria (N = 805)			
	Male	Female	Total	Male	Female	Total	Male	Female	Total	Male	Female	Total
Cocoa Livestock Other crops Off-farm	3321 377 318	2215 177 305	5536 554 623	2046 198 436	935 28 133	2981 226 569	1782 211 300	1002 86.87 82.23	2785 298 382	1439 116 307	904 52 220	2343 168 527
Income Total gross	1474	998	2472	937	453	1390	772	1712	2484	858	378	1236
income	5490	3695	4592	3617	1549	5166	3066	2883	2975	2720	1554	2137

Table 32. Gross income (\$) per annum per household

3.7.2 Household expenditure

The expenditure patterns of households can determine their investment in technologies. The survey assessed the various types of expenditure items at each household level and the average amount spent on each item. From *Table 33*, household expenditure items are food, farm inputs, labour costs, and other household expenditures such as education, medical expenses, clothing, social events, airtime, taxes, and energy.

Figure 8. Contribution of sources of income to total HH income

3.8 Food security and food access

3.8.1 Food availability and access at the household level

This section presents the results of the household food availability and access, which is defined in this survey as households having food at their disposal all year round and being able to afford it.

The study collected information about household food production and availability all year round, in which respondents had to indicate whether they had food all year round or if there were shortages

From Figure 9, between 72% and 91% of respondents indicated that they have food available all year round across the four countries. About 28% in Ghana and 9% in Côte d'Ivoire indicated shortages, whereas between 14% to 16% in Cameroon and Nigeria indicated shortages, respectively. Most food items were bought, and this suggests that food expenditure could increase during these shortages and could affect farm investments.

Among the coping strategies used by households during these periods included borrowing, reduced number of meals per day, modified cooking methods, and substituting with cheaper meals (*Figure 10*).

Expenditure Item/Avg. Amount		Average Expenditure								
	Cameroon	Côte d'Ivoire	Ghana	Nigeria						
Food per week (\$)	14.27 (742)	9.59(786)	22.43 (1166)	26.52 (1379)						
Fertilizer per annum (\$)	41	38	56	51						
Fungicide per annum (\$)	86	42	55	75						
Insecticide per annum (\$)	75	35	69	83						
Average labor cost per annum	407	200	444	439						
Long-term expenditure (\$)[1]	1951	1689	999	1473						
Total expenditure	3302	2004	2789	3500						

Table 33. Total household expenditure

Source: Survey data, 2019. *Numbers in brackets are the amounts spent on food per annum

3.8.2 Household dietary diversity score (HDDS)

Dietary diversity is a qualitative measure of food consumption that reflects household access to a variety of foods and is also a proxy for nutrient adequacy of the diet of individuals (FAO Guidelines, 2011). The dietary diversity scores in this survey consist of 12 food groups that a household has consumed over a 24-hour period. The data collected was analyzed at the household level to indicate the average household dietary diversity score and the percentage of different food groups being consumed by the groups. It shows the economic capability of a household to access a variety of foods. Studies have shown that an increase in dietary diversity is associated with socioeconomic status and household food security (Hoddinot and Yohannes, 2002). The average HDDS per country as indicated in *Table 34* shows that between seven and nine food groups were consumed by the surveyed households during the 24-hour period

preceding the survey across the four countries, with Ghana consuming the least food groups. *Table 35* shows the percentage of households consuming the different food groups. Among the limited consumed food groups are eggs and milk products across the three countries, meat in Cameroon and Ghana, and legumes and nuts in Ghana.

Figure 9. Availability of food all year round

Source: Survey data, 2019. *HDDS Scale: 0-12. Used 12 food groups based on FAO/FANTA Figure 10. Coping strategies for food shortages

Table 34. Average household dietary score (HDDS)

	Cameroon	Côte d' Ivoire	Ghana	Nigeria
Average Household	7.9	7.2	7.2	8.7
Dietary Diversity				
Score (HDDS)				

Source: Survey data, 2019. *HDDS Scale: 0-12. Used 12 food groups based on FAO/FANTA

Food Product	Cameroon (N = 828)	Côte d'Ivoire (N = 802)	Ghana (N = 817)	Nigeria (N = 805)
	(it = 030) %	(i i = 003) %	% %	% %
Cereals and products	65.36	85.09	86.05	84.46
Vegetable	94.15	98.39	99.02	97.26
White root and tubers	67.50	65.84	85.06	93.29
Fruits	75.54	58.01	61.20	62.73
Meat	43.91	20.87	30.72	62.98
Legumes, nuts, and seeds	76.25	29.57	34.02	81.61
Eggs	26.79	7.83	16.03	32.55
Fish and other sea foods	74.16	92.55	87.64	77.89
Milk and milk products	27.26	17.27	9.79	32.05
Oils and fats (added to food or used for Cooking)	91.67	77.76	71.85	87.83
Sweets	47.14	61.49	39.53	43.98
Spices, condiments, beverages	96.67	98.88	99.51	95.16

Table 35. Consumption of different food groups (%)

Source: Survey data, 2019

4 DEFORESTATION, BIODIVERSITY, and ECOSYSTEM SERVICES

4.1 Baseline of ecosystem services and biodiversity in the cocoa zone of West Africa

4.1.1 Ecosystem services in the cocoa zone: Baseline

Aim: identify areas currently important for the delivery of ecosystem services within areas currently suitable for cocoa.

Methods: Baseline ecosystem services were assessed using the web-based spatially explicit ecosystem services assessment tool CostingNature V₃ (www.policysupport.org). This tool maps 13 ecosystem services: timber, fuelwood, grazing and fodder, non-wood forest products, water, fisheries, carbon, natural hazard mitigation, culture and nature-based tourism, environmental and aesthetic quality, and wildlife services (pollination). Each ecosystem service was mapped individually and ranked between o and 1 for the whole region. Finally, these maps were combined and normalized to present a map of total ecosystem services.

Results: The total realized ecosystem services for the cocoa zone (*Figure 11*) shows high values of ecosystem service provision on the border between Sierra Leone and Liberia (Gola rainforest), in Ghana in the Awura forest reserve, Nigeria downstream along the Niger River, and on the border with Cameroon where several national parks are located. The key services in these areas are carbon sequestration and other forest-related services such as timber and fuelwood.

Figure 11. Baseline total realised ecosystem services in the cocoa zone

4.1.2 Biodiversity in the cocoa zone: Baseline

Aim: Identify areas currently important for biodiversity with high suitability for cocoa potentially leading to deforestation.

Methods: To provide an indication of how 'important' a given area is for biodiversity, a metric based on range size-rarity (i.e., endemism) was used, and scores were aggregated for all species. The underlying data was based on the IUCN range data (Parra *et al.*, 2017) for all available species of mammals, amphibians, and birds and refined to include only areas of suitable habitat. Refinement was carried out using data on species' altitudinal limits bontem and habitat affiliations from IUCN, linked to ESA CCI Land Cover (Bontemps *et al.*, 2013) for 2015 and GMTED2010 (Danielson and Gesch, 2011) elevation data.

Results:

Areas of high importance for biodiversity in the cocoa zone are shown in Figure 12 (in dark blue). These areas are focused in parts of Cameroon and Liberia, with more scattered patches in Côte d'Ivoire, Ghana, Togo, and Nigeria.

This dataset includes areas of importance based on all land cover classes. A few areas of high biodiversity importance are present in the northern areas of the cocoa zone and are typically clustered in remaining protected areas of forest or in mountainous forest areas (such as in Cameroon). The latter likely reflects natural endemism from isolation by geographic barriers, whereas elsewhere, this may be due, in part, to land use change (such as seen in the remaining forest patches in Ghana).

Figure 12. Baseline biodiversity importance in the cocoa zone based on range-size rarity for mammals, amphibians, and birds.

4.2 Baseline current risk to biodiversity and ecosystem services from cocoa

Aim: Investigate the potential risk to biodiversity and ecosystem services (ES) from cocoa expansion under the current climate.

Current suitability categories and broad areas of current cocoa production (Schroth et al. 2016) are used as a proxy for the likelihood of cocoa currently occurring — as maps of actual cocoa cultivation at a national scale are not available — but also as a proxy for the likelihood of cocoa expansion. We focus mainly on potential cocoa expansion into the forest.

4.2.1 Risks to ecosystem services under current suitability

Areas of high suitability are assumed to already be cocoa, except if they are in protected areas (including forest reserves) or if we have other data saying this is most likely not cocoa (e.g. land cover data shows no trees). Risks and potential outcomes for ES will be different for each situation. For areas under forest, conversion to cocoa will have a strong impact on certain ES, though we have to consider how cocoa affects ES over time. When mature, it can behave like a forest (more a plantation, really), but young cocoa is probably not very different from other crops in terms of impacts on various ES. *Methods:* The normalized ecosystem services layer for the region was combined with modeled cocoa suitability based on Schroth et al. (2016) using a bivariate map (Figure 13).

Results: The combined map shows areas that are currently very important in the delivery of ecosystem services and highly suitable for cocoa production (Figure 13). These areas are mostly forests, as forests are important for the delivery of multiple ES. The map also shows that large areas in Liberia are highly suitable for cocoa production but are low in ecosystem services delivery.

Figure 13. Bivariate map showing modeled cocoa suitability against ecosystem service delivery. Dark red colours are very suitable for cocoa growing as well as high in ecosystem service delivery.

4.2.2 Risks to biodiversity under current suitability

Methods: This biodiversity significance layer was compared with modeled cocoa suitability for the region (Schroth et al. 2016), using a series of bivariate maps. These aim to highlight possible areas of high biodiversity that might be most at risk from cocoa production, and so focus on forests (see Figure 14) and unprotected forests (see Figure 15), based on removing non-forest classes and protected areas (UNEP-WCMC and IUCN, 2018).

Results

The results show areas of high risk to biodiversity from cocoa-driven deforestation in defined patches in the south of Ghana and west of Côte d'Ivoire (e.g., the Tai Forest). Large tracts of such areas are also present in Liberia and northeast Cameroon (*See Figure 14*, areas in dark brown).

Figure 14. Bivariate map showing modeled cocoa suitability against biodiversity importance (based on range-size rarity) in forests. Dark brown areas have biodiversity and high risk from cocoa-driven forestation.

However, when protected areas are removed from the visualization, the unprotected forest that remains in both Ghana and Côte d'Ivoire is limited to small, scattered patches. Thus, in terms of the highest risk to forest biodiversity from cocoa-driven deforestation, the frontiers appear more concentrated in Liberia and Cameroon. This highlights the need for careful land use planning to limit potential impacts on species of high conservation concern (such as endemics) in these areas.

4.3 Deforestation

Aim: Maps recent deforestation in the area suitable for cocoa in West Africa *Method:* This analysis uses recent rates of deforestation based on Terra-I spatial deforestation data.

Result: The mean deforestation rate between 2010 and 2017 for the whole region is 1.1% but 100% for some pixels, mainly in Ghana and Sierra Leone (*See Figure 16*). This is within the current suitable zone for cocoa with a cutoff of 25% (i.e., good and upwards).

Figure 15.Bivariate map showing modeled cocoa suitability against biodiversity importance (based on range-size rarity) in forests outside protected areas. Dark brown areas have high biodiversity and high risk from cocoa forestation.

Figure 16. Deforestation between 2010 and 2017 (Terra-i) in the current suitable zone for cocoa with a cutoff of 25% (i.e., good and upwards). (Schroth et al. 2016).

5 SUMMARY AND CONCLUSIONS

This report establishes a reference point for the project's impact and some selected outcome indicators in the project results framework, which include current cocoa yields from smallholder cocoa farmers, income generated from cocoa production, deforestation rates, types of labour used/access, and the types of ISFM recommendations/practices currently used by target smallholder cocoa farmers. It also details some social characteristics required to inform a focused dissemination of technologies among the surveyed respondents.

Awareness and use of ISFM components among respondents are high. The use of mineral fertilizer is found to be high in Cameroon, Côte d'Ivoire, and Ghana but not in Nigeria, where awareness and use are about 57% and 20%, respectively. The high degree of awareness is partly attributed to the diverse sources of information accessible by respondents. Most of the information was disseminated through government agencies, private companies, and NGOs. However, yields are still very low and way below the potential (Cameroon, Côte d'Ivoire and Ghana), ranging between 294 kg/ha and 408 kg/ha. Improvements in yields will, therefore, not require much awareness creation about the existence and importance of the ISFM components but the right application of the components and the gaps in the various training contents based on assessments.

The application of the ISFM components is inconsistent with the country-level recommendations. Fertilizers are applied as and when most farmers prefer or have access to them and with limited quantities, not up to the quantities recommended per hectare (e.g., mostly two bags of 50 kg of NPK 15-15-15 applied on an average plot of 2 hectares in Nigeria). This could be due to inadequate funds as the majority indicate no sources and lenders as key reasons for lack of credit. The barriers to high yield are the insufficient and inconsistent use of fertilizers (including organic fertilizers) and other ISFM practices.

Most plantations in Cameron and Ghana are between the ages of 4 and 25 years (mature and adult), with about 19–28% being over 25 years (old). Over 50% of plantations in Nigeria are over 25 years old. This indicated a highly significant relationship between the age of the plantations and the yields. This could suggest the need for a rehabilitation investment option for most respondents in Nigeria.

Most respondents use family labour for most farm activities, with temporary hires to supplement. The introduction of any technology component needs to consider the labour requirements and investments and develop appropriate strategies to support households, for example, enhanced access to credit, which the analysis showed limited access by especially female farmers.

The mean income from cocoa is the highest among the other sources of income, accounting for over 60% across the countries. This significance of income from cocoa suggests the overdependence of households on cocoa production and an increase in yield could have a direct relationship with income, with linkages to appropriate output markets. The disaggregated income from cocoa revealed that male farmers earned relatively more income than females (20% to 40%).

The household dietary diversity score reveals that households consumed between 7 and 9 food groups out of 12 food groups. This suggests that households in the study area are economically able to access, to some extent, different food groups.

REFERENCES

Asare, R., Muilerman, S., & Anim-Kwapong, G. J. (2018). Good agronomic practices in cocoa cultivation: Rehabilitating cocoa farms. In *Achieving sustainable cultivation of cocoa* (pp. 197-224). Burleigh Dodds Science Publishing Limited.

Bontemps, S., Defourny, P., Radoux, J., Van Bogaert, E., Lamarche, C., Achard, F., ... & Arino, O. (2013, September). Consistent global land cover maps for climate modelling communities: current achievements of the ESA's land cover CCI. In *Proceedings of the ESA living planet symposium, Edimburgh* (Vol. 13, pp. 9-13).

Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010).

Food and Agriculture Organization of the United Nations. (2011). Guidelines for Measuring Household and Individual Dietary Diversity.

Hoddinott, J., & Yohannes, Y. (2002). *Dietary diversity as a food security indicator* (No. 583-2016-39532).

Parra, G. J., Cagnazzi, D., & Beasley, I. (2017). Orcaella heinsohni (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e. T136315A123793740. *IUCN Red List of Threatened Species*, 10, 2017-3.

Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C., & Jassogne, L. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. *Science of the Total Environment*, 556, 231-241.

UNEP-WCMC & I.U.C.N. (2018). NGS.(2018). Protected planet report, 70.

Vanlauwe, B., Descheemaeker, K., Giller, K. E., Huising, J., Merckx, R., Nziguheba, G., ... & Zingore, S. (2015). Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. *Soil*, 1(1), 491-508.