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Abstract 
 

Comparing Classification of Ghana’s Complex Agroforestry Land Cover by a Random Forest and a 

Convolutional Neural Network with a Small Training Set 

Anne-Juul Welsink, Wageningen University  

MSc Geo-Information Science 

03-2020 

Accurate and up-to-date land cover maps are key to environmental research, monitoring of climate 

change and deforestation, resource management, and disaster prevention. Over the past years, 

Convolutional Neural Networks (CNNs) have replaced traditional algorithms such as the Random 

Forest (RF) as a dominant land cover classifier, thanks to their superior performance. However, little 

research has been done regarding the performance of either algorithm with different amounts of 

training data. This study asks how the performance of the RF and CNN compares for a 9 class land 

cover classification based on Sentinel-1 and Sentinel-2 imagery in West Africa. The performance of the 

RF and CNN was assessed with both 400 and 800 training points per class. In addition, this study asks 

which land cover classes were most affected by the choice of algorithm, and which of the two 

performed best on these classes. A study area in South-West Ghana was used; a region where several 

commercial crops and drivers of deforestation are grown in a country with one of the highest net 

deforestation rates worldwide. The results of this study show that with the relatively small training 

sets that were used, the CNN was more prone to overfitting than the RF due to its higher bias towards 

the training set. Neither algorithm structurally showed better performance in areas of major 

disagreement; the algorithm that classified an area as cacao was always favoured over the alternative. 

This implies that, even though the CNN may have a higher potential accuracy, a RF can outperform the 

CNN when little training data is available, when intra-class variability is high, and/or when the 

parameterization of the CNN is suboptimal. Data acquisition is a major challenge in deforestation 

monitoring and the remote sensing domain in general. The insight that this study provides into the 

performance of the RF and CNN with limited input data can guide the choice of a suitable algorithm in 

future research and puts the presumed superiority of the CNN into perspective.  
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1. Introduction 
 

Anthropogenic activities have a strong impact on natural forests and other forms of land cover across 

the world (Tondoh et al., 2015). Accurate and up-to-date land cover maps are key to environmental 

research, monitoring of climate change and deforestation, resource management, and disaster 

prevention (Pelletier et al., 2019). Satellite imagery is used to create land cover classifications used to 

monitor such dynamics (DeFries et al., 2006). However, classification is often challenging due to the 

high intra-class variance of objects and spectral similarity, particularly in agroforestry landscapes with 

mixed land cover (Duguma et al., 2001; Yang et al., 2018). In those complex landscapes, the spectral 

signatures of different agroforestry crops are often difficult to distinguish, which complicates 

classification. 

In order to optimize land cover classification, it is important to know which algorithm performs best in 

which situation. The RF is renowned for its high performance and often used as a baseline in 

classification (Zhong et al., 2019). The RF builds a number of binary decision trees, and uses a bootstrap 

sample of the data of each tree (Pelletier et al., 2019). The data are recursively split into two subsets 

and all possible splits are tested based on a feature value until all nodes are pure or when a user-

defined criterion is met. The RF is appreciated for its easy-to-tune parameters and its robustness to 

the presence of mislabelled data (Pelletier et al., 2019). Over the past few years however, the CNN has 

emerged as a dominant algorithm in land cover classification, thanks to its superior performance (Scott 

et al., 2017). A CNN applies convolutions in both x and y dimensions (Pelletier et al., 2019). Each 

convolutional layer takes the outputs of the previous layer as inputs.  Significant expertise is required 

to choose and optimize the hyperparameters, but the CNN has the potential to achieve a significantly 

higher accuracy than conventional classifiers (including the RF) (Helber et al., 2018; Huang et al., 2018; 

Liu et al., 2018). However, the CNN is prone to overfitting, especially with limited training data (Liu et 

al., 2018). There is a need to gain more insight into the performance of the RF and CNN with different 

training sample sizes, in order to better understand in which cases investment in the parameterization 

of a CNN is worthwhile.  

 

Relatively little research has been done to compare how either algorithm performs with small or 

varying amounts of input data. In fact, Liu et al. (2018) claim that their study on object-based wetland 

mapping with Unmanned Aerial Vehicle (UAV) data is the first to comprehensively compare a CNN with 

conventional classifiers, taking the size of the training sample into account. Further research on the 

performance of different algorithms with very different amounts and qualities of training data could 

guide the choice for a particular algorithm, given an available set of data. This is particularly useful in 

the remote sensing domain, where acquisition of large and/or high-quality datasets is a major 

challenge (Helber et al., 2018; Scott et al., 2017).   

 

This study builds on the novel research by Liu et al. (2018) by providing insight into the performance 

of a RF and CNN when trained with a relatively small amount of data in an agroforestry landscape. The 

comparison of these algorithms is based on a case study in South-West Ghana. The classification 

includes the most important tree crops and potential drivers of deforestation that are found in the 

area of interest  (Anderman et al., 2014; Chiti et al., 2014). The following research questions are 

addressed: 
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1. How does the performance of RF and CNN algorithms compare for 9-class land cover 

classification in South-West Ghana? 

2. Does the performance of the RF and CNN differ with reduced training data (400 points as 

compared to 800 training points per class)? 

3. Which land cover classes are most affected by the choice of the two algorithms, and which 

algorithm performs best for these classes?  

Sentinel-1 and Sentinel-2 data provide the basis for the classification. Sentinel-1’s Synthetic Aperture 

Radar (SAR) provides observations in the C-band. This study used imagery collected in Interferometric 

Wide Swath (IW) mode with a spatial resolution of 5 by 20 meters and a 250 km swath. Sentinel-2’s 

multi-spectral imagery is available in a spatial resolution of up to 10 meters, covering 13 bands.  

 This study compares the performance of a Random Forest (RF) and a Convolutional Neural Network 

(CNN) on land cover classification with 9 classes in Ghana based on Sentinel-1 and Sentinel-2 imagery. 

It investigates which algorithm generalizes best with 400 and 800 training points per class, respectively. 

Elaborate validation was performed on the classifications with 800 training points, in line with ‘good 

practice’ recommendations from Olofsson et al. (2014). Furthermore, this study investigates which 

land cover classes are most affected by the choice of the two algorithms and which algorithm performs 

best for these classes. The following sections provide a detailed description of the data and methods 

that were used. Next, an overview of the results is presented, followed by a discussion and limitations 

section in which the results are interpreted and placed in the context of existing research. A brief 

conclusion wraps it all up.   
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2. Area and Classes of Interest  
 

The study area in South-West Ghana encompasses an area of around 67 800 km2 (Figure 1). Ghana’s 

tropical forests are located in the south and west, while the central and northern zones are savanna 

(Förster, 2009). The area of interest includes the denser forest and protected (and deforested) areas 

around Kumasi as well as some less dense savannahs in the northern part.  

 

Figure 1. Study area in South-West Ghana.  

Ghana is among the countries with the highest net deforestation rates worldwide (FAO, 2015). At the 

start of the 20th century,  around one-third of Ghana was covered by natural tropical forest, of which 

an estimated 78% had disappeared by 1989 (Appiah et al., 2009; Hawthorne, 1989). More recently, an 

annual deforestation rate of around 3% has been recorded (Appiah et al., 2009). Deforestation is 

enticing to farmers, as newly cleared forest areas produce higher commercial crop yields than 

replanted areas (Rice & Greenberg, 2000). In addition, clearing a new forest area costs about half the 



 

4 
 

effort of replanting (Rice & Greenberg, 2000). This renders Ghana’s agroforestry landscape an 

important focus for deforestation monitoring. 

Cacao (Theobroma cacao) is one of the most important cash crops in West Africa, and the area provides 

about 70% of global cacao demand (Ruf, Schroth, & Doffangui, 2015). The crop is the primary driver of 

deforestation in Ghana; an estimated 27% of deforestation has been attributed to cacao production 

(DeVries et al., 2015; Kroeger et al., 2017). However, cacao and natural forest are difficult to distinguish 

on satellite imagery due to their high spectral similarity (Duguma et al., 2001). Therefore, special 

attention is paid to the classification of  this crop.  

Besides cacao, oil palm and rubber plantations are among the most important drivers of deforestation 

(Asubonteng et al., 2018; Chiti et al., 2014). These crops, too, need to be distinguished from natural 

forest as well as cacao plantations in order to obtain reliable information on drivers of deforestation. 

Tree crops such as shea nuts or mangoes are included under the general class of other tree crops, 

because the distinction between these crops is not easily made on the basis of satellite imagery (Yaro 

et al., 2017). Furthermore, there is a class for seasonal crops, which have a different temporal signature 

than the other classes (which is reflected in the standard deviation). The classification is completed 

with classes for low vegetation, urban, and water. 
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3. Data  
 

This section provides insight into the data that were used for this study. It starts with an overview of 

the data that were used for training and testing, followed by the validation set. Finally, the remote 

sensing imagery that was used as a basis for the classifications is introduced. 

 

3.1 Training and testing  
For each of the 9 classes of interest, 1200 points were collected, of which 800 were randomly selected 

for training and 400 were used for testing (Figure 2, Figure 3). For eight classes, points were collected 

in QGIS 3.10.0 based on a hybrid Google layer in combination with Google Earth Pro and Google Street 

View data from 2017. A circular support area with a diameter of 42m was used to establish the land 

cover (size based on personal communications with CIAT). For the 9th class of cacao, over 3000 ground 

Figure 2. Points used to train the RF and CNN. Here, 800 points 
per class are depicted. A random stratified subset was used to 
train with 400 points per class. 

Figure 3. Validation points used in the testing phase (400 per 
class). 
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truth points were available that were collected in the field in 2016 (Bunn et al., 2019). A verified subset 

of those points was used to train the RF and CNN. Verification took place based on imagery from 2017 

on hybrid Google, Google Earth Pro and/or Google Street View. The benefit of using field data was 

considered greater than the drawback of using data from 2016 instead of 2017. The land cover was 

expected to remain stable over the time period of a year considering the fact that cacao is a perennial 

crop (Siebert, 2002). In addition, cacao plantations are generally profitable and therefore assumed to 

be relatively stable land covers (Duguma et al., 2001).  

3.2 Validation 
In the validation phase, the algorithms were tested on a new set of points, again collected in QGIS with 

the exception of the ground truth points for the class of cacao (Figure 3). The required number of 

validation points was calculated in R based on a desired confidence level of 2*2.5%, in accordance with 

Olofsson et al. (2014): 

𝑁 =  
(∑ 𝑊𝑖𝑆𝑖)2

[𝑆(Ô)]2 + (
1
𝑁

) ∑ 𝑊𝑖𝑆𝑖
2

 ≈ (
∑ 𝑊𝑖𝑆𝑖

𝑆(Ô)
)

2

, 

where N is the total number of points, S(Ô) is the standard error of the estimated overall accuracy 

(2.5%), Wi is the mapped proportion of the area of class i. Si is the standard deviation of class i (𝑆𝑖 =

 √𝑈𝑖(1 − 𝑈𝑖)), where Ui is the precision of class i based on the test set. A proportional sampling design 

was used to calculate the number of validation points per class, with a minimum of 40 (Lillesand et al., 

2015). Points were randomly sampled for each class. In case of unknown land cover or low image 

resolution, additional random sample points were added for the class in question, in order to ensure 

that the required number of validation points was maintained.  

3.3 Remote sensing imagery 
The imagery used for classification was from Sentinel-1 and Sentinel-2 (level-1C) (Sentinel-2 MSI, 2015). 

Composites of the years 2017 and 2018 were used in order to obtain at least 10 cloud-free images on 

average, which was necessary for a reasonable estimate of the standard deviation. Images with over 

60% cloud cover were rejected. Including bands for 2 years was suboptimal because the training and 

validation data were (mostly) from 2017, yet acceptable as the land cover was not expected to change 

significantly within a time period of one year. After all, the classification is mostly concerned with 

perennial crops (Fold, 2008).  

A stack of 40 bands was used for training. The 20th percentile, 50th percentile, 80th percentile, mean, 

and standard deviation were included for each of the following wavelengths: blue, green, red, near-

infrared, and two short-wave infrared bands. In addition, slope and elevation were included, because 

both influence the growth of the crops included in the current classification (Läderach et al., 2013). 

Slope, elevation, and the medians of Sentinel-1 VV- and VH-polarized ascending bands were collected 

in interferometric wide swath (IW) mode (descending is not available for Ghana).  

Finally, the 20th, 50th and 80th percentiles, mean, and standard deviation of the Normalized Difference 

Vegetation Index (NDVI) were included. The NDVI is calculated using the visible and near-infrared 

bands. It was included separately because the relationship between red and infrared is key to 

vegetation classification (Jia et al., 2014; Krishnaswamy et al., 2004). Feeding this information directly 

to the algorithms was thought to save time for training and calibration. 
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3.4 Pre-processing 
Pre-processing was performed in the Python API of Google Earth Engine using Python 3.7. The study 

area was limited to a single swath in order to remove strong differences in illumination and cloud 

coverage between different swaths.  Every band was normalized independently. Only images with less 

than 60% cloud cover were maintained and the lower and upper 20 percentiles were excluded in order 

to further reduce cloud distortion. For Sentinel-1, Google Earth Engine’s SAR GRD quality mask was 

used (Sentinel-1 SAR GRD, n.d.). For Sentinel-2, the QA60 band was used for cloud masking (Sentinel-

2 MSI, 2015). A topographic correction was applied on the Sentinel-2 data based on the cosine 

correction for slope (Tan et al., 2013).  
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4. Methods 
 

This section provides a detailed overview of the methods that were used for this research. It starts 

with the pre-processing stage, followed by the parameterizations of the RF and the CNN. It then 

continues with a description of the processing steps in the testing phase, and subsequently the 

validation phase. This includes calculation of confidence intervals for precision and recall, and 

validation in the land cover classes on which the RF and CNN disagreed relatively often.   

4.1 RF parameterization 
A pixel-based supervised random forest algorithm was used on the Google Earth Engine cloud 

computing platform (Breiman, 2001). The number of trees was varied with a stable validation set of 

800 points in order to determine the number of trees. An optimal fit was achieved with 100 trees. The 

number of variables per split was set to the square root of the number of variables, and the minimum 

size of a terminal node was 1. 

4.2 CNN parameterization 
The CNN was constructed in Java using the DL4J open source software and included 1 convolution, 1 

max pooling layer, and 3 dense neural network layers. A moving window of 7x7 pixels was used, of 

which the central pixel was classified. See Appendix I for the full parameterization of the CNN. 

 

 

Figure 4. Succinct flowchart of the research methods. 
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4.3 Testing  
The RF and CNN were both run with 400 and 800 training points per class (Figure 4 below). In both 

cases, the same test set of 400 points per class was used. Accuracy indicators of the resulting classified 

map were obtained with and without sieving, using a threshold of 10, and 8-connectedness. Whether 

sieving is desirable depends on the purpose of the project, as it reduces potential noise at the cost of 

resolution.  

The results without sieving are more representative of the performance of the classifier and were 

therefore validated further. Raster values were sampled at the validation points in order to compute 

the confusion matrix. Accuracy metrics based on the test points were calculated in R (including overall 

accuracy, precision, recall, and F1-score). 

4.4 Validation 
Validation was performed following CEOS-WGCV level 3 requirements (CEOS Working Group on 

Calibration and Validation, 2019). The non-postprocessed maps resulting from training with 800 points 

per class were validated further (Figure 4). Random validation samples were taken for each class on 

the basis of a proportional sampling design. The total number of samples was calculated based on the 

proportional confusion matrix, where the initial test sample was used to estimate the accuracy. The 

estimated area proportions 𝑝̂𝑖𝑗 were calculated in accordance with the formula provided by Olofsson 

et al. (2014): 

𝑝̂𝑖𝑗 =  𝑊𝑖
𝑛𝑖𝑗

𝑛𝑖∙
, 

where Wi is the proportion of area mapped as class i, 𝑛𝑖∙ is the total number of sample units of map 

class i, and 𝑛𝑖𝑗 refers to the number of samples of class j mapped as class i. Again, R was used to obtain 

accuracy metrics, including overall accuracy, precision, recall and F1-score. 

4.4.1 Precision and recall 
Confidence intervals were calculated for the precision and recall of the validation samples in 

accordance with (Olofsson et al., 2014). The test samples were not taken randomly, which implies that 

confidence intervals cannot be calculated for those results (Olofsson et al., 2014). For the precision of 

class i (𝑈̂𝑖), the estimated variance (𝑉̂) was calculated as follows: 

𝑉̂(𝑈̂𝑖) =  𝑈̂𝑖(1 − 𝑈̂𝑖)/(𝑛𝑖∙ − 1), 

where 𝑛𝑖∙ refers to the total number of sample units of map class i.  

The estimated variance (𝑉̂) of the recall of reference class j (𝑃̂𝑗) is: 

𝑉̂(𝑃̂𝑗) =  
1

𝑁̂∙𝑗
[

𝑁𝑗∙
2(1−𝑃̂𝑗)

2
𝑈̂𝑗(1−𝑈̂𝑗)

𝑛𝑗∙−1
+  𝑃̂𝑗

2 ∑ 𝑁𝑖≠𝑗
2 𝑁𝑖∙

2 𝑛𝑖𝑗

𝑛𝑖∙
(1 −

𝑛𝑖𝑗

𝑛𝑖∙
) /(𝑛𝑖∙ − 1)

𝑞
𝑖≠𝑗 ], 

where 𝑁̂∙𝑗 =  ∑
𝑁𝑖∙

𝑛𝑖∙

𝑞
𝑖=1 𝑛𝑖𝑗 is the estimated marginal total number of pixels of reference class j, Nj is the 

marginal total of map class j and 𝑛𝑗∙ is the total number of samples of map class j. The confidence 

intervals were calculated as  ±1.96√𝑉̂(𝑈̂𝑖), where 𝑈̂𝑖  was replaced by 𝑃̂𝑗 for the recall.  
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4.4.2 Classes of major disagreement 
ArcMap 10.6.1 was used to analyse the prevalence of all the different combinations of classification 

results by the RF and CNN (trained with 800 points per class). The following raster calculation was 

performed to obtain this information: 10 ∗ (𝑚𝑎𝑝1 + 1) + (𝑚𝑎𝑝2 + 1), where 𝑚𝑎𝑝1 was the 

classification result of the RF and 𝑚𝑎𝑝2 was the classification result of the CNN. This resulted in a two-

digit number, of which the first represented the classification result of the RF, and the second 

represented the classification result of the CNN. The results were analysed in R. Special attention was 

paid to different classification results related to the class of cacao. This class is of special interest, 

because cacao production is among the most important drivers of deforestation in Ghana, while the 

spectral similarity between cacao plantations and natural forest is particularly high (DeVries et al., 

2015; Duguma et al., 2001). The combinations of classification as cacao by one algorithm and a 

different class by the second were analysed. Combinations that occurred in more than 1% of the cases 

were validated more elaborately. For each of these combinations, 40 points were taken randomly in 

each of the 6 areas of disagreement (Lillesand et al., 2015). These points were again classified based 

on Hybrid Google, Google Earth, and/or Google Street View data from 2017 in order to assess which 

algorithm performed better in these areas.    
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5. Results 
 

This section starts with the classification results, showing the performance of the RF and the CNN with 

400 and 800 training points per class. In addition, the impact of sieving is shown. Next, the outcomes 

of the validation phase are presented, in which 800 independent new samples were taken for each 

class. Finally, the results of validation in the areas of major disagreement follow. 

5.1 Testing  

 
Figure 5. Areas in which the classification results of the RF and CNN 
correspond. Training was performed with 800 points per class. White areas 
inside the study area indicate disagreement between the RF and CNN, or a 
no-data value for either algorithm. 
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Table 1. Precision, recall, and F1-score (%) per class for the RF and CNN. These metrics are reported for training with 400 
points per class and 800 points per class, with and without sieving. In addition, the overall accuracy of each training result is 
reported with the corresponding 95% confidence interval in brackets. 

 
Cacao Natural 

forest 

Palm Rubber Other 

tree 

Low 

vegetation 

Urban Seasonal Water 

Random Forest          

400 points Accuracy 81.2% (79.9, 82.5) 
      

Precision (%) 77.3 81.0 79.0 87.0 65.7 64.4 93.4 91.0 92.5 

Recall (%) 78.3 86.3 65.8 86.8 64.8 69.9 91.8 91.3 96.0 

F1 (%) 77.8 83.5 71.8 87.9 65.2 67.1 92.6 91.3 94.2 

800 points Accuracy: 82.5% (81.2, 83.7) 
      

Precision (%) 80.7 82.6 79.9 90.1 66.5 65.9 94.3 92.2 92.3 

Recall (%) 81.5 87.8 68.5 88.5 68.0 72.2 91.0 89.0 96.0 

F1 (%) 81.5 85.1 73.8 89.3 67.2 68.9 92.6 90.6 94.1 

400 points, sieved Accuracy: 82.8% (81.5.4, 84.0) 
      

Precision (%) 74.9 84.5 84.8 90.5 70.2 65.0 93.0 91.7 95.5 

Recall (%) 83.5 91.0 65.8 88.5 68.8 71.2 89.8 91.3 95.5 

F1 (%) 79.0 87.6 74.1 89.5 69.4 67.9 91.3 91.5 94.6 

800 points, sieved Accuracy: 83.1% (81.9, 84.3) 
      

Precision (%) 78.7 85.8 82.6 91.0 67.0 66.6 93.7 93.0 93.6 

Recall (%) 83.3 89.3 67.8 88.0 71.0 74.4 89.5 89.5 95.5 

F1 (%) 80.9 87.5 74.5 89.5 68.9 70.3 91.6 91.2 94.6 

CNN          

400 points Accuracy: 84.3% (83.0, 85.5) 
      

Precision (%) 85.1 88.7 87.6 82.4 69.2 69.7 96.1 93.1 93.0 

Recall (%) 81.4 88.7 63.2 93.9 78.1 76.2 88.9 90.7 97.7 

F1 (%) 83.2 88.7 73.4 87.8 73.4 72.8 92.3 91.9 95.3 

800 points Accuracy: 87.3% (86.1, 88.4) 
      

Precision (%) 81.6 96.1 83.1 90.1 78.0 76.4 94.0 92.5 94.0 

Recall (%) 86.3 91.9 80.6 92.4 78.6 72.9 91.6 93.2 98.2 

F1 (%) 83.9 94.0 81.8 91.2 78.3 74.6 92.8 92.9 96.1 

400 points, sieved Accuracy: 84.7% (83.4, 85.8) 
      

Precision (%) 84.1 89.2 88.6 83.9 69.4 70.3 96.3 93.3 93.3 

Recall (%) 82.4 89.7 63.4 94.2 79.3 76.7 87.7 90.7 97.7 

F1 (%) 83.3 89.5 73.9 99.7 74.0 73.4 91.8 92.0 95.4 

800 points, sieved Accuracy: 87.5% (86.3, 88.6) 
      

Precision (%) 80.9 96.3 84.5 90.5 78.1 76.7 94.2 92.8 93.9 

Recall (%) 87.6 92.2 81.1 92.6 80.1 72.8 90.3 93.0 97.7 

F1 (%) 84.1 94.2 82.8 91.6 79.1 74.7 92.2 92.9 95.8 
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5.1.1 Training with 400 points per class 
The random forest, trained with 400 points per class, obtained an overall accuracy of 81.2% (95% CI: 

79.9, 82.5) (Table 1; please refer to Appendix II for a graph of the precision, recall, and F1-scores). The 

CNN obtained a significantly higher accuracy of 84.3% (83.0, 85.5).  

Precision is the probability of a reference pixel being correctly classified (Liu et al., 2018). The CNN had 

a higher precision than the RF in almost all classes, apart from rubber (RF: 87.0%, CNN: 82.4%) (Table 

1). The difference in precision was bigger than 5% in the classes cacao (RF: 77.3%, CNN: 85.1%), natural 

forest (RF: 81.0%, CNN: 88.7%), and palm (RF: 79.0%, CNN: 87.6%).  

Recall is the probability that the classification of a pixel represents the real land cover (Liu et al., 2018). 

The CNN also performed better than the RF in terms of recall, apart from the classification of palm (RF: 

65.8%, CNN: 63.2%) and urban (RF: 91.8%, CNN: 88.9%). The difference between the two algorithms 

was bigger than 5% in the classes of rubber (RF: 86.8%, CNN: 93.9%), other tree (RF: 64.8%, CNN: 

78.1%), and low vegetation (RF: 69.9%, CNN: 76.1%).  

High differences between precision and recall are undesirable, because they indicate that the 

classification in a class is either quite exact but not complete (error of omission), or complete but not 

exact (error of commission). The biggest difference between the precision and recall within each 

algorithm was found in the palm class. The difference was almost 15% for the RF (precision: 79.0% 

recall: 65.8%) and 25% for the CNN (precision 87.6%, recall: 63.2%). The second biggest difference was 

6% for the RF in low vegetation (precision: 64.4%, recall: 69.9%). For the CNN, this was 9% in other tree 

(precision: 69.2%, recall: 78.1%).  

The F-1 score is defined as 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. The CNN obtained a higher F1-score in all classes, apart 

from urban (RF: 92.6%, CNN: 92.3%). The RF obtained the lowest F1-score in the classes of other tree 

(65.2%) and low vegetation (67.1%). The CNN obtained the lowest scores on palm, other tree, and low 

vegetation, each with an F1 rounded to 73%. Both algorithms obtained the highest scores on urban 

(RF: 92.6%, CNN: 92.3%), and water (RF: 94.2%, CNN: 95.3%). In addition, the CNN obtained a high F1-

score on seasonal (91.9%).  

5.1.2 Training with 800 points per class 
Classification with 800 points per class resulted in an agreement among the RF and CNN in 66% of the 

pixels (Figure 5). The RF achieved an accuracy of 82.5% (81.2, 83.7) (Table 1). The CNN achieved an 

accuracy of 87.3% (86.1, 88.4); significantly higher than that of the RF.  

The precision of the CNN was higher than the precision of the RF in all classes, apart from rubber (both 

rounded to 90%) (Table 1). The difference in precision was higher than 5% in the case of natural forest 

(RF: 82.6%, CNN: 96.1%), other tree (RF: 66.5%, CNN: 78.0%), and low vegetation (RF: 65.9%, CNN: 

76.4%). The recall of the CNN was higher than that of the RF in all classes, apart from urban, where 

both algorithms achieved a rounded recall of 92%. A difference above 5% was found for cacao (RF: 

78.3%, CNN: 86.3%), palm (RF: 68.5%, CNN: 80.6%), and other tree (RF: 68.0%, CNN: 78.6%). 

For the RF, the difference in precision and recall was highest for palm (precision: 79.9%, recall: 68.5%), 

followed by low vegetation (precision: 65.9%, recall: 72.2%). For the CNN, the highest difference was 

4%, found in the classes of cacao (precision: 81.6%, recall: 86.3%), natural forest (precision: 96.1%, 

recall 91.9%), and water (precision: 94.0%, recall: 98.2%).  
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The CNN obtained a higher F1-score in all classes (apart from a tie for urban). The RF obtained the 

lowest scores for other tree (67.2%) and low vegetation (68.9%) and the highest scores for urban 

(92.6%) and water (94.1%). The CNN also obtained the lowest scores for other tree (78.3%) and low 

vegetation (75.6%). The highest scores were achieved on natural forest (94.0%) and water (96.1%). 

5.1.3 Sieving 
Sieving resulted in an improved overall accuracy for both the RF and the CNN (Table 1). Based on 

training with 400 points per class, the accuracy of the RF increased from 81.2% to 83.1%. When trained 

with 800 points, the accuracy increased from 82.5% to 83.1%. Sieving improved the accuracy of the 

CNN from 84.3% to 84.7% when trained with 400 points. With 800 points, the accuracy improved from 

87.3% to 87.5%.  
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5.2 Validation  

 
Table 2. Result of validation based on a proportional random sampling design and training with 800 points per class. For both algorithms, the overall accuracy is reported with a corresponding 
95% confidence interval in brackets. Precision, recall, and F1-score are reported for each class. Precision and recall have corresponding 95% confidence intervals (CI). 

 
Cacao Natural forest Palm Rubber Other tree Low 

vegetation 

Urban Seasonal Water 

Random Forest Accuracy: 75.6% (71.6, 79.2)       

Precision (%) 93.5  74.6 70.7 61.0 22.6 89.0 82.2 64.3 100.0 

95% CI (93.3, 93.6) (74.2, 75.1) (70.3, 71.2) (60.4, 61.5) (22.2, 23.0) (88.8, 89.3) (81.9, 82.6) (63.8, 64.8) (100.0, 100.0) 

Recall (%) 63.8 78.1 55.8 100.0 85.7 69.2 88.1 96.4 100.0 

95% CI (63.6, 63.8) (78.0, 78.3) (55.5, 56.1) (100.0, 100.0) (85.4, 86.0) (69.1, 69.2) (87.1, 89.1) (95.9, 96.9) (100.0, 100.0) 

F1 (%) 75.8 76.3 62.4 75.8 35.8 77.8 85.1 77.1 100.0 

CNN Accuracy: 71.4% (67.3, 75.3)       

Precision (%) 84.6 78.9 76.2 41.7 16.4 86.3 86.1 71.4 97.8 

95% CI (84.3, 84.9) (78.5, 79.3) (75.8, 76.6) (41.1, 42.2) (16.1, 16.7) (86.0, 86.5) (85.8, 86.3) (71.0, 71.9) (97.8, 97.9) 

Recall (%) 52.0 83.6 60.4 80.0 66.7 65.1 90.2 93.8 100.0 

95% CI (51.9, 52.0) (83.4, 83.8) (60.1, 60.6) (78.1, 81.9) (65.8, 67.5) (65.0, 65.2) (88.9, 91.6) (93.4, 94.1) (100.0, 100.0) 

F1 (%) 64.4 81.2 67.4 54.8 26.3 74.2 88.1 81.1 98.9 
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In the validation phase, the accuracies of the RF and CNN reduced compared to those based on the 

test set. The overall accuracy of the RF was now 75.6% (95% CI: 71.6, 79.2) (Table 2) while the CNN 

achieved 71.4% (67.4, 75.3), 5% lower than that of the RF. The RF tended to confuse cacao for natural 

forest, while the CNN confused cacao for rubber relatively often (see Appendix III for the confusion 

matrices of the RF and the CNN in the validation phase). Both algorithms frequently confused cacao 

for other tree, and low vegetation for seasonal.  

The precision of the RF was significantly higher than that of the CNN for cacao, rubber, other tree, low 

vegetation, and water (Table 2). On the other hand, the precision of the CNN is significantly higher for 

natural forest, palm, urban, and seasonal. In each class, the algorithm with the best precision also 

achieved the highest recall, apart from seasonal. In the case of water, both achieved a recall of 100.0%.  

The differences between precision and recall were bigger in the validation phase than in the 

classification results as presented in Table 1. For both the RF and the CNN, the precision was at least 

15% higher than the recall for the classes of cacao, palm, and low vegetation. Recall was more than 

15% higher than precision for rubber, other tree, and seasonal.  

The RF obtained a higher F1-score than the CNN for cacao, rubber, other tree, low vegetation, and 

water. The CNN obtained a higher score for natural forest, palm, urban, and seasonal. As expected, 

these are the same classes for which the CNN obtained a higher precision and recall than the RF. Both 

algorithms performed relatively well on the classification of cacao, low vegetation, urban, and water. 

5.3 Areas of major disagreement 

 
Table 3. Matrix that indicates what percentage of the total number of pixels was classified as class i by the RF and class j by 
the CNN. The combinations of [i,j] where either i or j was cacao and i ≠ j that occur in more than 1%  of the pixels are highlighted 
in bold. The combinations on which both algorithms agree are found on the diagonal and are highlighted in italics. 

  
CNN  

  Cacao  Natural 

forest 

Palm Rubber Other 

tree 

Low 

vegetation 

Urban Seasonal Water 

R
F 

Cacao 16.2 0.8 1.3 0.8 3.1 1.4 0.1 0.0 0.0 

Natural forest 1.8 12.5 0.9 0.5 1.6 0.1 0.0 0.0 0.0 

Palm 0.8 0.7 4.1 0.3 1.1 0.2 0.0 0.0 0.1 

Rubber 0.3 0.3 0.6 1.7 0.8 0.2 0.0 0.0 0.0 

Other tree 2.4 0.4 2.1 0.5 5.4 1.8 0.1 0.1 0.1 

Low vegetation 1.7 0.0 0.6 0.2 2.1 10.4 0.6 1.8 0.2 

Urban 0.0 0.0 0.0 0.0 0.0 0.1 2.0 0.0 0.2 

Seasonal 0.0 0.0 0.0 0.0 0.1 0.6 0.1 4.1 0.0 

Water 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 9.7 

 

The RF classified pixels as cacao while the CNN classified them as palm in 1.3% of the map. The 

combination of cacao and other tree occurred in 3.08%, and the combination of cacao and low 

vegetation 1.4%. Other combinations where the RF classified land cover as cacao and the CNN gave a 

different result [cacao, i] occurred less than 1% of the time.   

The RF classified pixels as natural forest while the CNN classified them as cacao in 1.8% of the total 

pixel count. The combination of other tree and cacao occurred in 2.4%, and the combination of low 
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vegetation and cacao occurred in 1.7%. Other combinations of [i, cacao] occurred in less than 1% of 

the map.  

5.3.1 Validation in the areas of major of disagreement 

 
Table 4. Percent of times the RF and CNN were correct during validation in each combination of major disagreement related 
to cacao, based on 40 extra validation points per combination of major disagreement. Both algorithms were correct in case 
of mixed canopy (e.g. cacao and palm trees planted in the same area). The proportion that both were correct should be added 
to the proportion that a single algorithm was correct in order to get the total proportion of validation points that was correctly 
classified by the algorithm. 

 

 

 

 

 

 

 

 

 

 

In all combinations of disagreement, the algorithm that classified the area as cacao was correct more 

often (Table 4). This is in line with the fact that the precision on cacao for both the RF and the CNN was 

significantly higher than the recall (Table 2). The algorithm that classified cacao over an alternative 

land cover was considered correct at least 15% more often than the other algorithm in each but one 

class. Only the classification as cacao by the RF (40.0% correct) and palm by the CNN (37.5% correct) 

was more evenly spread.  

Both algorithms were correct relatively often in the combinations of cacao (RF) and palm (CNN) 

(22.5%), cacao (RF) and low vegetation (CNN) (23.4%) and low vegetation (RF) and cacao (CNN) 

(30.4%). In these cases, mixed land cover was present, which implies that in spite of disagreements in 

the classifications, to some extent both maps correctly represent the land cover in these areas. It 

occurred relatively frequently that neither algorithm classified correctly in the combinations of cacao 

(RF) and other tree (CNN) (21.4%) and other tree (RF) and cacao (CNN) (15.9%). This is explained by the 

fact that most new cacao plantations are planted in thinned forest with different types of trees, which 

are planted or maintained to provide shade to the subcanopy (Clough et al., 2009). 

  

  RF CNN Both correct Neither correct 

  Cacao Palm 
  

% 40.0 37.5 22.5 0.0 

  Cacao Other tree 
  

% 66.7 7.1 4.8 21.4  
Cacao Low vegetation 

  

% 51.1 23.4 23.4 2.1  
Natural forest Cacao 

  

% 6.3 87.5 2.1 4.2  
Other tree Cacao 

  

% 2.3 77.3 4.6 15.9  
Low vegetation  Cacao 

  

% 23.9 39.1 30.4 6.5 
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6. Discussion  
 

This section interprets the findings that were presented in the previous section in light of existing 

research, and provides insight into the questions that were highlighted in the introduction. The first 

part of this section compares and explains the performance of the RF and CNN on land cover 

classification with 400 and 800 points in the testing phase, followed by an interpretation of the results 

in the validation phase. Next, the results of validation in the classes of major disagreement are 

discussed and interpreted. This section ends by highlighting a number of limitations of this study, and 

suggestions for further research.   

6.1 The size of the training dataset 
Previous research has shown that the RF has a relatively high accuracy on large scale studies compared 

to other traditional algorithms (Pelletier et al., 2019). Yet, CNNs can outperform RFs in classification 

efforts, as they can be more finely tuned than a RF through their many hyper-parameters (Helber et 

al., 2018; Huang et al., 2018; Pelletier et al., 2019). In the testing phase of this research, the CNN indeed 

achieved a higher overall accuracy than the RF, as well as a higher precision, recall, and F1-score in 

most classes (Table 1). This was the case for both training with 400 and 800 points. The results of both 

the RF and the CNN were better with more training points.  

The CNN was more sensitive to the amount of training data than the RF. This can be explained by the 

fact that a CNN can achieve a very good fit, but is highly biased towards the training data; the algorithm 

is therefore prone to overfitting (Pelletier et al., 2019). The fact that the accuracy of the CNN saw a 

bigger improvement than the RF with 800 instead of 400 training points per class can be explained 

through the same line of reasoning. An increase in the number of training points had a bigger impact 

on the CNN than on the RF, as the RF had neared its potential more closely with fewer data. This is in 

line with the finding of Liu et al. (2018) in their study on wetland mapping, in which the RF also 

generalized better than a CNN. The high accuracies that are frequently reported for CNNs are generally 

achieved with a higher number of training points and through iterative sampling (Huang et al., 2018).  

An additional difference between the RF and the CNN is the fact that the RF is a pixel-based method, 

while the CNN applies a moving-window approach (Zhang et al., 2019). As a result, speckle noise and 

intra-class variance have a higher influence on the classification accuracy of the RF than that of the 

CNN. Sieving reduces this influence, but also limits the level of spatial detail in the classification. Sieving 

resulted in an improvement of the accuracy of the RF and the CNN, although the improvement in the 

CNN was somewhat smaller than that of the RF. After all, the RF is more prone to noise as it classifies 

individual pixels without taking the neighbourhood into account, as opposed to the CNN. Whether the 

loss of spatial detail that results from sieving is desirable depends on the purpose of the study and the 

available training data. Besides post-processing, more elaborate pre-processing could help to reduce 

noise caused by clouds and atmospheric effects. 

6.2 Validation   
In the validation phase, the accuracy of the RF was higher than that of the CNN (Table 2). The RF 

achieved a better precision, recall, and F1-score (which is based on the former two) on cacao, rubber, 

other tree, low vegetation, and water. The CNN achieved better results for natural forest, palm, urban, 

and seasonal. Overall, the CNN performed more poorly than the RF in the validation phase (although 

not significantly). The relatively low accuracy of the CNN is likely due to its proneness to overfitting 

(Pelletier et al., 2019). The risk of overfitting is higher with little training data and in case of high intra-
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class variability (Yang et al., 2018). High intra-class variability implies that the spectral signature of a 

particular land cover is relatively unstable, which complicates the delineation of a class. The validation 

stage was based on a fresh, random sample. The RF generalized better than the CNN, resulting in better 

performance on these independent validation data. This is in line with research by Liu et al. (2018), 

which emphasizes that CNNs are prone to overfitting with limited training data. With even less training 

data, the RF may gradually start to further increase its advantage in relation to the CNN. The fact that 

CNNs outperform RFs in most existing literature is due to the fact that most previous research has used 

a larger amount of training data (Helber et al., 2018; Huang et al., 2018). According to Liu et al. (2018), 

none of these studies have used a varying sample size in the comparison of CNNs and conventional 

classifiers.  

Besides general class accuracies, precision and recall are of interest. Precision is the complement of 

the omission error (100% - omission), while recall is the complement of the commission error (100% - 

commission). For both algorithms, the precision was more than 15% higher than the recall for cacao, 

palm, and low vegetation for both the RF and the CNN. These classes occupy a large proportion of the 

classified area, and therefore tend to have a relatively high commission error (Figure 1) (Olofsson et 

al., 2012). Conversely, rubber, other tree, and seasonal occupied relatively small areas in the 

classification and tended to be underrepresented (omitted) (Figure 1). Large differences between 

precision and recall are undesirable, because they may indicate a structural flaw in the (training of) the 

model. If it is undesirable to miss deforestation events, it is less problematic when the recall of drivers 

of deforestation is higher than the precision than the other way around. In that case, deforestation 

may be suspected in some areas where it is not present, rather than it being overlooked. In the current 

classification, it is particularly undesirable that the precision was (much) higher than the recall for the 

classes of cacao and palm. Iterative sampling could reduce these differences and further improve the 

accuracy of the models (Tuia et al., 2011).  

Both algorithms performed relatively well on cacao, low vegetation, urban, and water. The RF 

performed better than the CNN on the classes of cacao, rubber, other tree, low vegetation, and water, 

while the CNN performed best on natural forest, palm, urban, and seasonal.  Further research on the 

structure of the input data and the importance of different explanatory variables could lead to a better 

understanding of the large differences in some class accuracies. The RF may perform better in classes 

with high intra-class variance, while the CNN is perhaps favourable in case of high spectral similarity, 

due to its tendency to fit more closely to the training data (DeVries et al., 2015; Pelletier et al., 2019). 

The RF is will likely outperform the CNN if the variety in the spectral signature within a single class is 

high, since the CNN is suffers more from overfitting (Pelletier et al., 2019).  

In the validation phase, the accuracy of both the RF and the CNN decreased compared to that of the 

testing phase (Table 2). This can be partly explained by the fact that the test data were an independent 

subset of the training data, while the validation set was collected separately as a subset of the 

reference data. Therefore, the test set was likely more biased towards the training set, which resulted 

in a higher accuracy than in the validation phase.  A second explanation for the decrease in accuracy is 

the fact that the validation points were taken randomly, as opposed to the test set. The land cover at 

these random points was more often mixed than that in the training and testing phase, for which 

uniform land covers were selected relatively often.  
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6.3 Areas of major disagreement 
In the areas of major disagreement related to cacao, the classes in which the choice of algorithm 

mattered most were characterized by a large difference in the accuracy, and a low percentage of cases 

in which both algorithms were correct (indicating mixed land cover) (Table 4). This was the case for 

the combinations of cacao (RF) and other tree (CNN), natural forest (RF) and cacao (CNN), and other 

tree (RF) and cacao (CNN). In all combinations of disagreement, the algorithm that classified the area 

as cacao was correct more often than the alternative (Table 4). This is explained by the fact that the 

precision on cacao for both the RF and the CNN was significantly higher than the recall (Table 2). 

Further validation is required in order to assess to what extent this is due to sampling bias. 

Overall, validation in the classes of disagreement did not structurally favour one algorithm over the 

other. Previous research has shown that CNNs have the potential to outperform RFs when a large 

quantity of training data is available and when the hyper-parameters are optimized well (Helber et al., 

2018; Pelletier et al., 2019). A small training dataset, erroneous data, or spectral limitations in satellite 

imagery seem to have had a relatively high impact on the classification accuracy of the CNN compared 

to the RF, due to its more flexible fit (Liu et al., 2018). The RF performed comparable to the CNN in 

spite of its inferior theoretical potential (Helber et al., 2018; Huang et al., 2018; Liu et al., 2018). 

Therefore, researchers should consider the size and quality of their datasets before investing in the 

complex parameterization of a CNN.  

6.4 Limitations and further research 
A number of limitations require attention. First of all, In the pre-processing stage, only basic cloud 

detection was performed. More elaborate cloud rejection could improve the quality of the image. In 

addition to that, inclusion of temporal metrics could improve land cover classification (Baamonde et 

al., 2019; Eberenz et al., 2016). This would foster recognition of crops based on their temporal 

variability, which is influenced by the seasonality of the Ghanaian climate (Lieberman, 1982). Future 

endeavours should account for the temporal variability of crops beyond the standard deviation. 

Furthermore, the classification results are directly influenced by the quality of the input data. Cloud 

cover is highly prevalent in West-Africa, which limits the number of images that can be used for 

verification. In this study, the land cover in West-Ghana was assumed to be rather stable, as mostly 

perennial crops were included in the analysis (Fold, 2008; Siebert, 2002). At the same time, land cover 

changes, notably forest fires and cutting, are quick and common (Saatchi et al., 2001). Therefore, 

training data may quickly be outdated and classification errors result. Moreover, training points are 

most likely not always accurate because crops such as cacao are often planted under the shade of 

native trees, which makes it difficult to distinguish them from forest visually (Saatchi et al., 2001).  

The training points in this project were collected based on a non-random sampling strategy. Although 

this speeds up the collection of training points, mixed and unknown land covers are likely to be 

underrepresented, as they could not be clearly marked as one of the land cover categories that were 

included. This problem could be mitigated through the use of a random sampling strategy, although 

this requires an extra time investment to classify unknown or mixed landcovers. Unfortunately,  sub-

optimal data is all we have access to at this point. The sampling error is likely to be non-negligible and 

should be included explicitly in further research.  

That being said, it is important to emphasize that the findings of this research cannot be generalized. 

Future research should investigate how the algorithms perform with an incrementally increasing 
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number of training points and rounds of iterative training data collection (Liu et al., 2018). Comparison 

of the classification results of a RF and CNN with different amounts and qualities of input data provides 

insight into the performance of these algorithms under various circumstances. In addition, 

comparisons between different study areas could provide insight into the respective performance of 

the algorithms with different types of land cover. This can help to inform the selection of the most 

appropriate algorithm, given a set of available training data.  
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7. Conclusion 
 

This study has compared the performance of a RF and a CNN on land cover classification with 9 classes 

in West Africa using two different sets of training data (400 and 800 points per class). Remotely sensed 

imagery from Sentinel-1 (IW) and Sentinel-2 formed the basis for the classification. The results have 

shown that the CNN performed better than the RF in the testing phase for both training with 400 and 

800 points. Sieving resulted in a slight improvement of the results of both the RF and the CNN. The 

results of the RF improved a little more, as its pixel-based approach is more prone to noise than the 

moving-window of the CNN. 

The RF outperformed the CNN in the validation phase. The RF was found superior on the classes of 

cacao, rubber, other tree, low vegetation, and water, while the CNN performed best on natural forest, 

palm, urban, and seasonal.  Both algorithms performed relatively well on the classification of the 

classes of cacao, low vegetation, urban, and water. Further research on the structure of the input data 

and the importance of different explanatory variables could lead to a better understanding of the large 

differences in some class accuracies. 

The classes that were most dependent upon the choice of algorithm were cacao, other tree, and 

natural forest. The combinations on which the RF and CNN disagreed most frequently were validated 

more elaborately with 40 points per area of major disagreement (where either algorithm classified the 

area as cacao). The algorithm that classified as cacao was correct more often than the alternative in 

each combination. Apart from that, neither algorithm structurally performed better than the 

alternative.  

Overall, the RF generalized relatively well in the validation phase, while the CNN was more prone to 

overfitting due to its higher bias towards the training set (Pelletier et al., 2019). Thus, even though the 

CNN may have a higher potential accuracy, use of a RF may be favourable when little training data is 

available and/or when intra-class variability is high. The fact that neither algorithm structurally 

performed best in the areas of disagreement reinforces the point that investment in the 

parameterization of a CNN may not be worthwhile when little or low-quality input data is used.   

Data acquisition is a major challenge in deforestation monitoring and the remote sensing domain in 

general (Helber et al., 2018; Scott et al., 2017). Research into the performance of algorithms with small 

or varying amounts of input data can guide the choice of a suitable algorithm in remote sensing-based 

research. Liu et al. (2018) were the first to account for the amount of input data in their comparison 

of a CNN and more traditional algorithms. Their study focussed on object-based wetland mapping. This 

study has built on their work by comparing the performance of a CNN and RF in Ghana’s complex 

agroforestry landscape. It has provided insight into the performance of the RF and CNN with limited 

input data, which puts the presumed superiority of the CNN into perspective (Helber et al., 2018; 

Huang et al., 2018). 
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Appendix I. Parameterization of the CNN 
 

Software: Deeplearning4j 1.0.0 beta 5 

--------------------------------------- 

Input 7X7X39 (39 layers) 

--------------------------------------- 

Convolution (1) with: 

Convolution size: 4X4     

Stride: 2X2   

Padding: no padding   

N mask: 128 

--------------------------------------- 

Max pooling layer (1):  

Size 2X2    

Stride 2X2 

--------------------------------------- 

Dense layers (3):  

Unit: 2048 

Drop-out survival rate: 0.6 

--------------------------------------- 

General parameters: 

Regularisation L2: 0.001*0.0020 

Initial bias:1e-2 

Parameter update: Adam(0.018*1e-2) 

Bias updater: Adam(0.018*2*1e-2) 

Loss Function: NEGATIVELOGLIKELIHOOD 

Last layer activation: Activation function: SOFTMAX 

Hidden Layer Activation Function: RELU 

Gradient Normalization: Gradient Normalization, RenormalizeL2PerLayer 

Optimization Algorithm: Optimization Algorithm STOCHASTIC_GRADIENT_DESCENT 

Initial weight distribution: Weight Init Xavier 
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Appendix II. Graph of Precision, Recall, and F1-score 
 

 

 

 

 

Figure 6. Precision, recall, and F1-score (%) per class for the random forest and CNN. These metrics are 
reported for training with 400 points per class and 800 points per class. 
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Appendix III. Confusion Matrices of the RF and CNN in the Validation Phase  
 

 

Table 5. Confusion matrix of the results of the RF in the validation phase, where the classification results are indicated on the 
rows, and the ground truth is represented in the columns. The number of validation points per class was calculated based on 
the proportional confusion matrix (see p. 9). 

  
Reference  

  Cacao  Natural 

forest 

Palm Rubber Other 

tree 

Low 

vegetation 

Urban Seasonal Water 

P
re

d
ic

ti
o

n
 

Cacao 86 2 2 0 0 2 0 0 0 

Natural forest 11 50 6 0 0 0 0 0 0 

Palm 4 6 29 0 1 1 0 0 0 

Rubber 9 1 3 25 1 2 0 0 0 

Other tree 20 5 10 0 12 6 0 0 0 

Low vegetation 5 0 1 0 0 65 1 1 0 

Urban 0 0 0 0 0 7 37 0 0 

Seasonal 0 0 0 0 0 11 4 27 0 

Water 0 0 0 0 0 0 0 0 47 

 

 

Table 6. Confusion matrix of the results of the RF in the validation phase, where the classification results are indicated on the 
rows, and the ground truth is represented in the columns. The number of validation points per class was calculated based on 
the proportional confusion matrix (see p. 9). 

  
Reference  

  Cacao  Natural 

forest 

Palm Rubber Other 

tree 

Low 

vegetation 

Urban Seasonal Water 

P
re

d
ic

ti
o

n
 

Cacao 66 2 4 0 2 4 0 0 0 

Natural forest 10 56 2 2 0 1 0 0 0 

Palm 6 3 32 1 0 0 0 0 0 

Rubber 14 4 4 20 3 3 0 0 0 

Other tree 23 1 11 1 10 11 3 1 0 

Low vegetation 7 1 0 1 0 69 1 1 0 

Urban 1 0 0 0 0 5 37 0 0 

Seasonal 0 0 0 0 0 12 0 30 0 

Water 0 0 0 0 0 1 0 0 45 

 

 


